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TRANSACTIONS OF THE V., A. STEKLOV MATHEMATICAL INSTITUTE

APPLICATION OF THE CHARACTERISTICS METHOD TO NUMERICAL SOLUTION
OF UNIDIMENSIONAL PROBLEMS IN GAS DYNAMICS

A.I. Zhukov

ABSTRACT

The motion of an ideal, compressible gas is investigated,
assuming that all quantities depend on one coordinate and time.
The usual gasdynamic equations are derived in Chapter 1.

In Chapter 2, the equations of the characteristics and the
invariants are discussed. Chapter 3 treats the theory underlying
the practical methods used to determine the flow field. Chapter 4
outlines the order of accuracy of the initial calculation (based
on linear interpolation) and the recalculation (based on quadratic
interpolation). Practical formulas are derived for several
equations of state in Chapter 5, and practical procedures for hand
computation are discussed in Chapter 6.

The computation of the flow field in the vicinity of the
boundary is treated in Chapter 7. Several examples of simple waves
(for which one of the Riemann invariants is constant) are dis-
cussed. Using the laws of conservation, the jumps in the flow
parameters across line discontinuities are presented in Chapter 9.

Discontinuities through which no matter passes are called
contact discontinuities. If there is a flux of matter through the
discontinuity, it is called a shock wave. Practical formulas for
computing the flow field with a contact discontinuity are discussed
in Chapter 10. The decay of an arbitrary discontinuity into either
a shock wave, expansion wave, or contact discontinuity .is treated.

Under the assumption that the substance cannot sustain nega-
tive pressure, separation occurs which is discussed in Chapter 14.
The over-all accuracy of the solution is checked by verifying the
fact that the integral forms of the conservation laws are sat-
isfied. A detailed description of the computer program for the
"Strela" computer and an example are given.




*
FORWARD /4

By right, the method of characteristics occupies an important position in
hydrodynamics and gas dynamics. However, there has been no complete descrip-
tion of it in our literature as a numerical method until recently. The book by
D. Yu. Panov* gives only the simplest information regarding this problem. It
cannot serve as a handbook for the practical solution of any complex problem.

This book represents an attempt to present systematically a numerical
method of characteristics as applied to one specific class of problems - uni-
dimensional, nonstationary problems of gas dynamics. It includes basic in-
formation on equations of hydrodynamics which, however, can in no way substi-
tute for a systematic course. The book is designed for the reader who has a
basic understanding of the theory of equations of partial derivatives, who
is familiar with the bases of hydrodynamics and gas dynamics, and who has
studied numerical methods in the normal university course. Appendix 1 describes
programs designed for electronic computers; this section is intended for quali-
fied programmers.

The bases of the numerical method presented here were developed more
than ten years ago by K. A. Semendyayev with the help of I. M. Gel'fand. The
individual sections belong to the author of this book.

The manuscript of this book was reviewed, and the author would like to
express his profound appreciation to K. A. Semendyayev, S. K. Godunov, and
Ya. M. Kazhdan who made several very valuable comments.

% D. Yu. Panov. Numerical Solution of Quasilinear Hyperbolic Systems of
Differential Equations of Partial Derivatives (Chislennoye resheniye
kvazilineynykh giperbolicheskikh sistem differentsial'nykh uravneniy v
chastnykh proizvodnykh). Moscow, Gostekhizdat, 1957.

Note: Numbers in the margin indicate pagination in the original foreign

text.
2



1. BASIC EQUATIONS

We shall investigate the problem of the unidimensional motion of an /5
ideal compressible liquid (or gas). As is known, the motion of a solid
medium is called unidimensional, if the spatial distribution of all the quan-
tities characterizing its condition depends only on one coordinate at each
moment in time. This coordinate may be the customary Cartesian coordinate;
such motion is called flat unidimensional motion. This coordinate may also
be the distance to a certain fixed axis of symmetry, and then the motion will
be cylindrically symmetrical motion. Finally, one significant coordinate may
be the distance to a specific center - this motion is called spherically sym-

metrical motion., We shall now derive the main equations for unidimensional

gas motiom.

A typical example of flat unidimensional motion is the motion of a gas or
liquid within the length of a right cylindrical tube (Figure 1). It must thus
be assumed that the tube walls have no influence upon the motion of the sub-
stance within, and that all the motion characteristics (particle velocity,
density, pressure, etc.) are the same for any transverse cross section and for
all points of this cross section. Particle velocities must be parallel to the
tube axis.

By selecting one specific cross section as the origin, we can completely
define any other cross section by the single coordinate x. Any characteristic
of the moving medium will depend only on this coordinate x and the time t.

In order to simplify the later discussion, we shall assume that the area
of the tube transverse cross section equals unity (this does not impose a limi-
tation on the generality, since - due to the fact that the walls have no in-
fluence - the motion of the medium does not depend on the magnitude of the
transversecross section). In addition, we shall assume that the total mass lé
of a substance located to the left of any cross section x, at any moment in
time t, has a specific finite value M. The quantity M is a function of the
two variables x and t. Let us determine its total differential.

Let us first examine the condition of our substance at a certain fixed
moment in time t. If x and x+dx are two infinitely close cross sections, then
the mass of the substance between them will be

dM = pdx,

where p is the density at the point x under consideration. Consequently, we

have
M _
ox

On the other hand, let us examine a fixed cross section x, and let us cal-
culate the change in the mass M during the time dt. The volume of substance

passing through our cross section will be u dt, where u is the particle velocity.

We obtain the mass by multiplying this volume by the density. We thus have

dM = ——pudt.



Figure 1

The minus sign must be placed here, because at a positive velocity u the
particles move from left to right, and consequently the mass M decreases.
This means that

M _
o T T

We finally have
dM = pdx — pu dt. (1.1)

Let us now assume that our cross section, defined by the coordinate x,
moves according to a certain law x = x(t). This motion can be expressed graphi-
cally on the x, t plane (Figure 2). We can calculate the mass flux through
this cross section when it moves from point A to point B. To do this, it is
necessary to integrate the differential (1.1l) along the curve AB, i.e., to cal-
culate the integral

B
{pdx —pudt.
A

It can be readily shown that the magnitude of this integral may depend
(for a given motion of the substance) only on the points A and B, but not on
the integration path combining them (formally, this arises from the fact that
expression (1.1) is a total differential). In particular, integration of ex-
pression (1.1) along any closed contour on the x, t plane must yield zero as
a result:

—pudt= 0.
§ pdx—p 1.2)

This formula represents the most general mathematical expression for the /7
physical law of conservation of mass for the case under consideration of the
flat unidimensional motion of a solid medium. It must be noted that equation
(1.2) is valid for any integrable functions p(x, t) and u(x, t). In particular,
these functions may be discontinuous.

If the functions of p and u have continuous partial derivatives, then con-
dition (1.2) can be written in the form

dp a(pu)

ot ox °’




Figure 2

or

® , % 0
S tuS+e5-=0. (1.3)

This is a differential form of the law of conservation of mass. As is knowm,
equation (1.3) is called the equation of discontinuity.

Similar expressions for cylindrically symmetric, and for spherically

symmetric, motion may be readily obtained. To be specific, let us discuss
the spherical case. All of the physical characteristics of the medium --
density, pressure, absolute particle velocity, etc. - at any moment in time
will be constant on the surface of any sphere drawn around the center of symme-
try. The direction of velocity at each point coincides with the direction of
the radius vector. Therefore, the velocity is given by one scalar quantity
o=z

dt*

Let us draw a sphere having the radius r around the center of symmetry,
and let us use 47 to designate the total mass of the substance included within
it (for purposes of convenience, the factor 47 is introduced). The volume of
substance included between the spheres having the radius r and r + dr equals
4mr? dr, and its mass is 4mpr2 dr. Therefore, we have

. 2
—a-; == Pr .

The volume of substance passing through a sphere having the radius r during
the time dt equals the product of the surface of this sphere 4mr? by the quan-
tity u dt. Thus, multiplying by the density, we obtain



oM s
7R upr=

(the minus sign is used for the same reasons given above). Consequently, /8
we have

dM = pridr — pur?dt,

We thus rapidly obtain the integral form of the law of conservation of
mass

§ pridr — pur®dt =0

and its differential form

dp dp ou pu
o T ug Tt Pa—,———-—2—,-

(spherical equation of discontinuity).

In the cylindrical case, similar reasoning leads to the expression for the

mass differential
dM = pr dr — pur dt

(r - distance from axis of symmetry, u - radial velocity component). We thus
have

§prdr-—purdt =0,

O 4 O . 04 pu
0t+udrrpar'_ r’

All three cases can be combined, if it is stipulated first of all that the
spatial coordinate is designated by r also for flat unidimensional motion, and
secondly that the factor v is introduced, equalling O in the flat case,l - in
the cylindrical case, and 2 - in the spherical case. The mass differential can

be written as follows

dM = prvdr — pur'dt, (1.4)
the law of conservation of mass - in the following form
§ pridr — pur'dt = 0, (1.5)

and the equation of discontinuity

1.6)

O . dp . du ou
atuy Teg=""T



In order to avoid any confusion, it should be noted that M, which can be
determined by equation (1.4), has the dimension [MLv‘z], which coincides with
the dimension of mass only in the spherical case, The fact is that in the
flat problem M represents the mass of the substance per unit of transverse
tube cross section, and in the cylindrical problem it represents the mass per
unit of length of the axis of symmetry. A similar stipulation must be kept /9
in mind for the momentum and energy examined below.

Let us investigate the law of conservation of momentum. The condition of
ideality for the substance is important for its derivation, i.e., the absence
of internal friction in it. Therefore, the only interaction force between the
particles will be the force of the pressure p.

In the case of flat, unidimensional motion, no particular difficulties
are encountered in deriving the law of conservation of momentum. We shall
again employ our model of a gas or liquid within a tube, and we shall designate
the total momentum of the substance located to the left of the cross section
with the coordinate r by P. We shall assume from this point on that not only
is this momentum P finite, but that there is no momentum flux from minus
infinity, i.e., for example, somewhere on the left there is a region of zero
pressure (just as previously, the final results do not depend on these assump-
tions).

The mass p dr is included between the cross sections r and r + dr. In
order to obtain the momentum, it is necessary to multiply it by the velocity u.
Thus, we have

apP
y = pU.
The mass pu dt passes through the given (stationary) transverse cross section
in the time dt; the momentum puzdt is removed together with it. 1In additiom,
the force p influences the substance with the momentum P from the side of the
substance located to the right (we should recall that the transverse cross

section has unit area). Therefore, the momentum p dt is lost in addition.
Finally, we have

OP 2
Consequently, we have

dP = pudr — (pu® + p)dt. (1.7)

Both the integral and the differential form of the law of comnservation of momen-
tum can thus be readily obtained. We prefer, however, to do this somewhat later
in a more general form.

The cylindrical and spherical cases are more complex. Momentum is a vec-
torial quantity, and it can be readily shown that, for example, in the spheri-
cal case the total momentum of a substance located within any sphere, which is
drawn around the center of symmetry, always equals zero exactly. The law of



conservation of momentum becomes trivial and meaningless.

The way out of this difficulty is as follows. Let us cut a cone out of
space (in the spherical case) with the apex at the center of symmetry (Figure 3),
and we shall investigate only the momentum of the substance included within this
cone and limited on the outside by a sphere having the radius r. It can be /10
assumed that this cone is not "imaginary", but is "real". It is only important
that its walls be absolutely smooth and that they have no influence on the mo-
tion of the substance included within them (similarly to the tube walls in the

flat case).

The total momentum of the substance within such a cone will not be equal
to zero, generally speaking, and we may attempt to calculate its total differ-
ential., However, one feature must be taken into account here, No matter how
"smooth" the walls of our cone are, they produce a pressure on the substance
included within them; in contrast to the flat case, the resultant force of this
pressure does not equal zero (it can be readily seen that it will be directed
to the outside). We must take this additional force into account. It can be
readily shown that the pressure (with the appropriate weight) must be integrated
over the cone surface in order to compute this force. The momentum differen-
tial cannot be expressed only by local quantities; it contains an integral. The
situation is completely identical in the cylindrical case.

We shall not perform the complete derivation here, but shall present the
result at once. The momentum differential has the following form

P
dP = purdr — [(pu + p)r — [ vr—apdrydt. (1.8)
0
The following form in which it may be written is also of interest:
r
dP = purdr — [puPr 4 j'r'dp] dt. (1.9
[1]

and the integral here must be regarded as the Stieltjes integral.

In order to obtain the integral form for the law of conservation of momen-—
tum, we must integrate the differential (1.8) over (an arbitrary) closed con-
tour on the r, t plane. Thus, the integral in the second component can be /11
readily transformed into an integral over the area included within this con-
tour. Thus, the law of comservation assumes the following form (we shall
again omit the intermediate computations)

@ pur'dr — (pu® + p)rdt = S yr'—2pdr dt. (1.10)

The integral for an arbitrary closed contour is on the left; the integration
direction is assumed to be counter-clockwise (Figure 4). The integral over the
area included within this contour is on the right.

By now equating the partial derivative for t from the first component of



1

Figure 3

the right part of (1.8) with the partial derivative for r from its second com-
ponent, we obtain the differential form of the law of conservation of momentum.
The integral in the second component thus disappears, and we obtain the equa-
tion .
a(pur’ 9 [(pu? r
oear) _ .2l R 1 upmp,
This equation can be transformed to the following form:
(P4 0 L 08 pd) @ 0w 4 0py
ru(01+udr+Pdr+vT'_‘—rp(at_‘_udr+F6r>_0'

When making a comparison with the equation of discontinuity (1.6), we can see
that the first bracket vanishes; we then arrive at the following equation

du ou 1dp_
TRy p 6r~0’

(1.11)

which is well known as the Euler unidimensional equation. We would like to point
out that it has absolutely the same form in the flat case, as it does in the
cylindrical and spherical cases.

We must now examine the law of conservation of energy. The difficulties
encountered in deriving the law of conservation of momentum disappear here, be-
cause enagy is a scalar quantity. It is only necessary to include again the
condition of an ideal medium, which is expressed in the absence of thermal con-
ductivity this time. This corroborates the fact that the total energy of a sub-
stance included within a certain volume changes only due to the pressure force
at the boundary. Let us perform a derivation for the cylindrical case. We /[12
shall draw two plames perpendicularly to the axis of symmetry; these planes are
located a unit of length from each other. We shall use 27E to designate the
total energy of a substance included within a volume defined by these planes
and by a cylindrical surface having the radius r which is drawn around the axis
of symmetry (Figure 5).



Figure 4

If we change the cylinder radius by the quantity dr, then the mass of a
substance included within the cylinder changes by the quantity 2wpr dr. The
total energy of this substance is comprised of two parts -~ a kinetic and in-
ternal (thermodynamic) part. If we use € to designate the specific internal
energy (i.e., the energy ofza unit of mass), we find that the total energy of
a unit of mass equals € +'%r. Consequently, the change in the total energy of
our substance, which occurs due to a change in the cylinder radius, equals

2mpr (e +-LL0 dr. Therefore,
2

a—l§=p<e—i—§)r.

Particles occupying the cylindrical surface move away from it at the dis-
2
tance dr = u dt in the time dt. There is an outflow of energy 2mp(e + %roru dt

from our cylinder along with the particles. 1In addition, these particles per-
form the work 2wrpu dt (the fl?t side of the cylinder equals 2wr). The total

energy decrease is 2mr[p(e + %?) + plJu dt. Thus,

F=—ule(c+%)+0p]r

We arrive at the following expression for the energy differential:
u? 2
dE = (e + 7)rdr—u[p(e+ %)—l—p]rdt.

In the general case (for all three types of unidimensional motion), it has the
form

10
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Figure 5

dE==p(e+‘§)'W'-"“[P(E*‘gs’*p]"d“ (1.12)

We thus rapidly obtain the integral form for the law of conservation of
energy:

@P(s i —l;—,) rvdr — u [p(s—{~ —‘_‘;—2)+p
The differential form of the law of conservation of energy can be written as /13
follows

%[P(E-i" -‘;—ﬂ)r’]-‘r l%{u [p(e—l—lg)—{-p] r‘}:ﬂ.

The latter differential equation can be greatly simplified, if we employ
the thermodynamic equation

rvdt = 0. (1.13)

de::Tds——pd(%),

where T is absolute temperature, and s is entropy. Removing all of the brackets
in this differential equation, making the following substitutions

de . 0s p dp
a=lataa
Ge . 0s p Op
a=T 5+ o

and taking the equation of discontinuity (1.6) into account as well as the Euler
equation (1.11), we obtain the following simple differential equation:

as ]
a—f—f—u;:o, (1.14)

Attention should be called to the fact that the left part of this equation

represents the derivative of %% taken in the direction dr = u dt. However, the
latter relationship is the law of particle motion for our substance. Consequent-
ly, equation (1.14) confirms the fact that the entropy of each particle remains

constant. We should point out that this conclusion is valid only when the

11



differential laws of conservation are applicable, i.e., where the quantities

u, p, P, €, etc. are at least continuous. It may then be assumed that the
thermodynamic process which each particle undergoes is reversible. The ab-
sence of thermoconductivity makes it adiabatic; therefore, equation (1.14)
should be written at once. It must be pointed out that the thermodynamic equa-
tion given above is applicable only when the process is reversible.

Not only the entropy s is constant along the direction dr = u dt. Expres-
sion (1.4) shows that the quantity M does not change in this direction. In its
turn, this indicates that the quantities M and s are related by the functional
dependence

s == s(M).
This fact will play a very important role later on. However, it is advan-

tageous to select another quantity having the dimensionality of length, instead
of M. It is called the Lagrangian coordinate.

Let p, = po(M) be the arbitrary function of M having the dimensionality of /14
density. We shall introduce the Lagrangian coordinate R by means of the follow-
ing relationship

M
RdR = . (1.15)

Thus, for the given function p,(M) the quantity R is determined within an accura-
cy of the constant:
(r.f)
v
Rt = Ryt 4 y

0

1

+

am.

Po

Integration may be performed in any manner.
The quantity R is a function of M. Consequently, we have
s = s(R). (1.16)

Substituting dM from (l.4) in (1.15), we obtain the differential of the Lagran-
gian coordinate

v .___P,. Y dr — g
RYdR = s (@dr —ud). (1.17)

Let us combine all of the main equations obtained in the present section.

The expressions for the total differentials of mass, momentum, and energy
[see (1.4), (1.8), (1.12)] are:

12



dM= pr'dr — pur'dt,

r

dP = pur'dr — [(pu2 + pyrr— S wrv=tp er dt,
L]

4t " (1.18)
dE = (s + -—2—) r“dr——u[p (e + ~2—) + p]r‘dt.
The integral laws of conservation [see (1.5), (1.10), (1.13)]:
@pr'dr—pur‘dt =0,
§jpur‘dr—— (pu? + p) rvdt = Svr““pdrdt. (1.19)
§)p (e +"—g) r"dr——u[p (e + ‘—g) + p] rdt=0
The differential equations of motion {see (1.6), (1.11), (1.14)]:
Sul L%, (1.20)
g-:--k ua—i =0

We should note that the differentials (1.18) and the laws of conservatiom /15
(1.19) will appear simpler if they are written in Lagrangian coordinates. Ac~
tually, we have the following from (1.17)

rdr = 2 R'dR + rou dt. (1.21)
p

Substituting this in (1.18), we obtain

dP = puR'dR — (pr“ — § v oip dr) dt,

[

dM = p,R*dR, ,

(1.22)

2
dE = py (= + %) R'dR— uprvdt.
)
We can transform equations (1.19) in a similar manner. It is convenient to
use these relationships for transforming the differential equations (1.20) to
Lagrangian coordinates.

In conclusion, we would like to point out the following. In the classical
theory of differential equations, the Cauchy problem is raised for differential
equations; equations (1.20) represent these equations in our case. However, as
the derivation of these equations shows, the integral equations (1.19) directly
expressing the physical laws of conservation must be regarded as basic for our
problem. We must formulate the Cauchy problem for them, and must solve the
problems immediately arising regarding the existence and uniqueness of a

13



solution, etc., This point of view has been developed only in very recent years,
and no comprehensive results have yet been obtained.

In particular, it is clear that integral equations such as (1.19) still do
not provide for a unique solution; additional conditions are requisite. In our
case, such a condition is provided by the second law of thermodynamics, from
which it follows that the entropy of each particle cannot decrease. Under this
condition, S. K. Godunov® was able to illustrate the uniqueness of the solution
for the Cauchy problem for equations (1.19), under certain limitatioms.

As a rule, we shall employ differential equations of motion, including in-
tegral equations,only in those cases when the differential equations are unten-
able (for example, when investigating and calculating discontinuous solutions).

S. K. Godunov. The Uniqueness of a Solution for Hydrodynamic Equations
(0 yedinstvennosti resheniya uravneniy gidrodinamiki). Matematicheskiy
Sbornik Akademii Nauk SSSR i Moskovskogo Matematicheskogo Obshchestva,
40 (82), No. &4, 467-478, 1956.

14



2. CHARACTERISTICS. RIEMANN INVARTANTS 16

We shall start with equations (1.20):

a9, di
Touged
) ou | 19, 2.1
ou o4 4 19 __
6t+udr+par 0

ds ds
— 4+ u—=0.
ot + ar

Equation (2.1) contains different combinations of partial derivatives of
P, U, p, 8. Let us transform these equations, so that each equation contains
derivatives of each function in the form of the following type of combination

2 a

i.e., in the form of derivatives with respect to a certain direction dr = q dt,
which is its own for each equation. In order that such a transformation be
possible, system (2.1) must be a hyperbolic system, as is known. These direc-
tions do not depend on the method of reducing our system to this special form,
and are called characteristic directions. The curve on the r, t plane, whose
direction at each point coincides with the characteristic direction, is called
the characteristic of the system (2.1). We thus obtain three systems of charac-
teristics - with respect to the number of equations (2.1). In addition, after
each of the differential equations is reduced to the form given above, it pro-
vides us with a specific differential relationship acting along the corresponding
characteristic.

We should first point out the following. As is known, there are only two
independent quantities among the thermodynamic quantities p, p, s, etc: by
selecting any two thermodynamic quantities, we can generally speaking express
any third one as a function of the first two. Each such relationship between
three thermodynamic quantities is called an equation of state. It is a thermo-
dynamic characteristic of the substance under consideration.

In particular, the pressure p is a function of the density o and the entropy
s: /17

pP=p(p s).

Let us write the total differential of this function:

dp = dep + Pst.

The partial derivative p, is positive for all real substances, and represents
the square of the speed of sound c:

Pe = 2.
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We thus have

X tuk—o (""+u )+ps( +u ‘;j)

or, taking the third equation (2.1) into account, we have

3—’;—}—14 cz("P+ ar)

Let us substitute lq—<—2- UJ1> in the equation of discontinuity, instead of

S% + u%% , and let us then multiply this equation by ﬁu We obtain

0,
( P4 u )%—cgfzz——vﬁf.
pe or r

The Euler equation can be rewritten in the following form

ﬁ‘;’r’+(—+ ):o.

Combining and subtracting the last two relationships, we obtain

5w aZ] s [ ruroz]- oz, =
ERHRE |

- {u—r¢c) }_—wﬂ.
The derivatives with respect to the direction dr = (u + c¢)dt are within the
brackets; therefore, equation (2.2) can be handled as follows. The following re-
lationship holds with respect to the direction dr = (u + c)dt

pc ot

dp - du = — v‘ifdt,
pc r

and with respect to the direction dr = (u - c¢)dt - the relationship

—du = — ‘au-cdt.
pc r

The third equation of system (2.1) confirms the fact that, as we already know, /18
we will have the following with respect to the direction dr = u dt

ds = 0.

Thus, the lines on the plane r, t are defined by the equations dr = (u +
+ c)dt and dr = u dt, which represent characteristics of system (2.1). Let us
write their equations one more time:
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dr = (u+ c)dt, ‘1c'l+du= —v2ar,
4

dr=(u—c)dt, P —du=—v¥adt; (2.3)
pc r

dr = udt, ds=0.

The first two equations contain the differentials of p and u. It is much
more convenient to deal with relationships which include the differentials of
entropy s and any other quantity. It is possible to transform equation (2.3)
to this form, if we introduce the so-called Riemann invariants.

Generally speaking, the expression %E is not a total differential,

since the quantity pc depends not only on pressure p, but also on entropy s,
for example. However, by adding an expression such as M ds* to g%; as a result
we obtain the total differential of a certain new thermodynamic quantity 9.
This may be done as follows.

Let us determine the fhermodynamic quantity ¢ by means of the relationship

dp .
d<b=;+Mds, (2.4)

where M is a certain thermodynamic quantity. A solution of the following equa-
tion is sufficient for determining &:
L

*

dp pe
assuming that p and s are independent variables. Thus, ® is determined within an

accuracy of an arbitrary function.

By substituting E%E-from (2.4) in the first two equations (2.3), we obtain

d®+ u)y=—vEdt + Mds.

¥
The quantities

A=+ u,
B=®—u
are called Riemann invariants. Equations (2.3) assume the following form /19

Naturally, M must not be confused with the mass investigated in section 1.
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dr = (u - c)dt, dA=—-v%dt+Mds;

dr = (u—c)dt, dB=—-v-':-°dt+Mds; (2.5)
dr = u dt, ds=0.

One distinguishing feature of equations (2.5) lies in the fact that the
relationship along the characteristic includes, on the one hand, differentials
of A, B, s, which we may regard as the desired functiors and, on the other hand,
the differentials of the coordinates t, r (it can be readily seen that the
differential ds can be expressed by the coordinate differential). This facili-
tates the change to Riemann invariants.

As was already indicated, the definition of ¢, as well as the Riemann in-
variants, is very arbitrary. Their specific selection is dictated by practical
considerations - from this point on we shall verify the fact that ¢ is selected
so that the quantity ¢ is expressed most simply by ¢ and s.

If ¢ is selected so that & = 0 in the case of p = 0, this quantity will
have a simple physical meaning. Let us imagine a certain volume of substance,
in an equilibrium state, contained between solid walls, and surrounded by empty
space. If these walls are suddenly removed at any time, the substance will be-
gin to scatter into the void. As will be seen at a later point, its leading
boundary will move at a velocity of u = 0.

18



3. BASES OF THE METHOD 20

Let us introduce the following notation:

=u+e,
B=u—cv
F=—v%¥

r

Then the equations of characteristics (2.5) can be written in the following
form

dr =adt, dA=Fdt+ Mds;
dr =Bdt, dB =Fdt + Mds;
dr = udt, ds=0,

(3.1)

We shall call the characteristics of the first set o-characteristics, of the
second set - B-characteristics, and we shall call the characteristics of the

third set trajectories.

We shall introduce the Lagrangian coordinate R by means of the relation-
ship (1.17)
R'dR = £ p (dr — udy).
'l ) (3.2)

Here pg is an arbitrary function of R, generally speaking. 1In the majority of
cases, it is most convenient to set the following at a certain initial moment of
time t = tg:

Po = p-
We can assume R = r at this moment, and the Lagrangian coordinate will have
the generally accepted physical meaning of the spatial coordinate of a given

particle, which it had at the initial moment t = tg. We shall designate P_ by
§. Po

The relationship dr = (u + c¢)dt or dr - u dt = +c dt holdsalong the charac-
teristics. Substituting this in (3.2), we obtain

R'dR = +4=cirvdl,

or /21

dR = j;cB( )'dt.

r
R
Let us set

e =a(z)
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We then have

dR = + R'dt, (3.3

The sign «+ » pertains to oa-characteristics, and the sign « -~ > pertains
to B-characteristics.

The entropy s is a function of R. We should first note that all of the
subsequent conclusions are absolutely independent of the fact that s is entropy
in the same sense as it is used in thermodynamics. We may use any function of
it, instead of s. Therefore, we shall call s an "entropy quantity" below.

We shall assume that the function s(R) is given.

Let us assume that we know the solution of system (2.1) in a certain region
of the plane r, t, i.e., the functions of p, u, p, s are given which satisfy
equations (2.1) and the equation of state of the given substance. We shall
assume that these functions are twice differentiable continuously.

Let us examine two points which are rather close on the plane r, t, and
let us designate them by the numbers 1 and 2. The number 3 designates the point
lying on the intersection of the o-characteristic passing through the point 1,
and the B-characteristic leading away from point 2 (Figure 6). At these points
all of the quantities (u, p, p, s, &, B, etc.) will be designated by the corres-

ponding numbers.

Our problem now consists of searching for the approximate formulas connect-
ing the quantities at the point 3 with their values at the pointsl and 2. If we
know points 1 and 2 (i.e., all of the quantities at them), these formulas enable
us to compute point 3. Let us employ a method which is similar to the well-known
Euler method which may be used in numerical integration of customary differential

equations.
The following relationship holds along the a-characteristic: /22

dr = o dt.

Let us now replace the variable o by the constant aj;. We obtain the approximate
equation

dr = o, dt,
from which it follows that
rs—ry=ay(ts—1). (3.4)
The second approximate equation may be written in exactly the same way
ry—ry =B (ts—1). (3.5)

Let us employ the approximate formulas (3.4) and (3.5) to compute the
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Figure 6

coordinates of point 3. Excluding the quantity r3; from these formulas, we
obtain

fo = afy —ffat+ra—n

ay —fis

; (3.6)
and by knowing t3 we can compute r3 by either of the formulas (3.4) (3.5).

Thus, the coordinates of point 3 have been computed (with a certain degree
of accuracy). Let us now turn to equation (3.3). In absolutely the same manner
as above, we can write the approximate equations

Ry=Ri+Ri(ts—t), } (3.7)
R3= Ry — Rx (ts — to).

Any of them enables us to obtain the approximate value of R3. WNot having deter-

mined which of these equations we should use, we shall use any of them. Since

by definition we know the functional dependence s = s(R), it is possible for us
to compute s3:

Sa=S(R3). (3.8)

Let us now turn to equation (3.1). By replacing the differentials with
the finite remainders in the relationships for the characteristics, just as
previously, and the coefficients with the quantities from points 1 and 2 corres-
ponding to them, we obtain two approximate formulas

Ay= A+ Fi(ts — ) + My (55 —s)), (3.9)
By = By + Fy (s — t3) + My (53 — 32),
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from which we can calculate A3z and Bgz. 23

However, since A= & + u, B = ¢ - u, we then have

‘I)=A+B,.u=‘4_8 )
2 2
In particular,
q)s_______‘ajBa,
(3.10)
— B
uszA’—z—s.

By knowing ¢3 and s3, we may compute any thermodynamic quantity. Thus, point
3 has been computed.

We may now significantly refine the result obtained, performing a second
approximation or, as we shall call it, recalculation. We shall proceed as
follows.

Instead of oj, let us substitute the following quantity in formula (3.4)

where o3 is the quantity o at point 3 obtained as a result of the computation
performed. Just as in formula (3.5), we substitute the following instead of

B2
Bys = ﬁz—é—ﬁa_

The new, approximate formulas which have been obtained along with formula (3.6),
which has been changed, provide us with new, more accurate values for the
coordinates of point 3.

Substituting the quantities R;' and R,' in formulas (3.7) by

) R.-+R. ) R.AR
Ris = 1 3'. Ry = 2 >

2 2

we can define the value of R3 more precisely, and consequently that of sj.
Finally, a similar replacement of the coefficients in formulas (3.9) provides
us with more accurate values of Ay and Bs.

We shall show in the subsequent section that the formulas for the first
approximation have residual terms on the order of h? (h - a step, i.e., the
distance between points 1 and 2), and that the "recalculation” formulas have re-
sidual terms on the order of h3. Thus, the recalculation increases the accuracy

by one order of magnitude.

It should be possible to make a second recalculation by replacing the
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quantities a3, B3, etc. in the coefficients of the approximate formulas by

their values obtained as a result of the recalculation just performed. It can
be shown, however, that such a second recalculation (as well as a third recal-
culation, and all subsequent recalculations) does not increase the order of
magnitude of the residual terms. /24

We must now make certain definitions. Let us set the quantities a and

B at a certain point on the r, t plane. The direction at this point is then
called the timelike direction, if the double inequality holds along it

dr
B<:2;<:G-

(since ¢ > 0, then B < o always). If one of the inequalities is fulfilled in
a given direction

dr dr .
Yy o, — 1
dt > dt <#

then the direction is called a spacelike direction (the direction dt = 0

belongs to the number of spacelike directions). If
I _ o or 4,
dt dt

then the direction is called the characteristic direction.

The nature of the given direction, whether it is timelike or spacelike,
is determined by its location at one of the four sections of the plane, on
which it is marked off by the characteristics passing through the given point.
Thus, in Figure 7 the direction 1-2 is timelike, and direction 1-3 is spacelike.

The line on the r, t plane is called timelike or spacelike depending on /25
which direction it has at each point. The following graphic criterion may be
employed to illustrate this. Let us draw the o and B characteristics ''upward"
from a certain point on the given line, i.e., toward an increase in t. If they
are both located to one side of the line under consideration, then at this point
it is spacelike (line AA, Figure 8). 1If these characteristics lie at different
sides of our line (line BB), then this line is timelike.

Let us now set the line AB, at each point of which the quantities r, t, u,
p, s are indicated (or any other total set of quantities). In addition, let
this line be spacelike. Let us divide it by a series of points into very small
sections. For each pair of adjacent points, we shall calculate a new point by
means of the process described above. A new series is thus obtained, containing
one point less. It can be readily seen that a line combining points in this
new series will again be spacelike. By repeating this process, we obtain a new
series and so on, until we arrive at a series consisting of one single point
(Figure 9). We may determine the Cauchy problem solution for the system (2.1)
within the curved triangle defined by the line for the initial data AB, by the
o-characteristic emanating from point A, and by the B-characteristic emanating
from point B. This triangle represents the region of influence for the AB line,
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Figure 7

more correctly, it is the approximate expression of this region. It follows
from the general theorems on hyperbolic equations that it covers the region in
which the Cauchy problem may be solved with the initial data located on the AB

section.

Up to this point, we have assumed that we are '"producing” the characteris-
tics "upward" by computing two points with a third, i.e., in the direction of
an increase in t. From the physical point of view, this is the most reasonable.
However, nothing is preventing us from proceeding in just the opposite manner,
i.e., from "producing" the characteristic "downward". We may then formulate
the solution in another triangle which has the same base AB and an apex which
lies below this line. We must resort to this type of computation at times,
although the computation is performed "from the bottom upward", as a rule. /26

We must frequently solve problems in which the line for the initial

data includes the sections of the characteristics. As compared with the pro-
cess described above, they do not present any new factors. Figure 10 presents
examples of the grids of characteristics thus obtained. The problem in which
the initial data are located on two characteristics (the left grid in Figure
10) is sometimes called the Goursat problem, and is even more typical than the
classical Cauchy problem for the method presented, with the initial data on
the spacelike line. The order of magnitude for the solution of this problem -
and also, for example, a problem such as that whose grid is shown at the right
in Figure 10 - is absolutely clear, and we shall not discuss it.

The case when the line of initial data is timelike does not have a physical
meaning, as a rule. We shall not investigate it here.

Boundary conditions, the most important of which will be investigated below,
are assigned on the timelike lines.
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Figure 8

The method presented in this section is based on numerical integration of
relationships (3.1), i.e., on integration of the Riemann invariants along the
corresponding characteristics, in essence. However, this method is not obliga-
tory - it would be possible to integrate equations(2.3) directly or to trans-
form them into any other form. Actually, the method of integrating the Riemann
invariants is not the most advantageous one in every case.

The analytic nature of the solution for equation (2.4) is entirely deter-
mined by the equation of state for the substance under consideration. Equa-
tions of state may be pointed out, for which ¢ depends on ¢ and s in such a
complex manner that the introduction of Riemann invariants loses all practical
meaning. It is true that all of those equations of state which we shall deal /27
with from this point on postulate the introduction of Riemann invariants (see
section 5). However, the stipulation just presented must be always kept in
mind when dealing with any other substance.

On the other hand, in every case when the equation of state permits it,
it is recommended that the computation be performed in Riemann invariants.
It is impossible to manage without them when computing expansion waves (section 8,
12). In the case of a flat, isentropic problem ¢ = 0, s = const), equations
(3.1) yield dA = 0 along the o-characteristics, and dB = 0 along the B-charac-
teristics. The advantages of computing in Riemann invariants are indisputable
here. 1If the entropy is not constant, but changes rather slowly, then the
Riemann invariants will also change along the characteristics comparatively
slowly, and their numerical integration will entail a comparatively small
amount of error. ‘

Based on these considerations, the rest of the discussion will be based
on Riemann invariants, with very rare exceptions(see, for example, section 10).
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4. ORDER OF ACCURACY. SELECTION OF STEP. /28

We shall not derive the residual terms for the formulas of the preceding
section; these terms are of no great practical importance. We shall confine
ourselves to determining the order of accuracy of the formulas.

Just as previously, we shall assume that the quantities o, B, etc. in
the region under consideration are functions which are differentiable (and,
consequently, limited) twice continuously of the variables r, t. We shall
assume that c is everywhere different from zero, and that the line connecting
points 1 and 2 (see Figure 6) is a spacelike line. The differences t3 - t;
and t3 - ty will be quantities on the order of h; the distances between points
1 and 2 have the same order of magnitude.

We have dr = o dt along the c-characteristic; consequently
a’ 2
f;;——fl—‘—“-’-al(t;;"—tl)—i"2—‘(t3'—t1),

da ‘o L
where o' is a derivative of Ez'along the characteristic taken at a certain in-

termediate point. Consequently, we have
rs—ry=oay (s —1y) + ah?,
where a is a finite quantity. Similarly, we have

r3——ry == Py (ts— &) + bh*.

Excluding rs3, we obtain

b —Baty - ra—r b—a
fo =1 =Py P a7 h.
: ay—f, - a—fs

The denominator equals (¢; + c¢y) + (u; - up) in the second term of the part on
the right side, and in view of ¢ > 0 it can be assumed to be different from
zero. This term is entirely on the order of hZ2. Returning to formula (3.6),
we note that the first term in the part on the right side is an approximate
value of t3; let us designate it by tz*. In addition, we have

. . ; + b—
f3'~—l'l== a](ta'—‘tg ';‘ tl'l '—'tl) "'r ahz———d.l(f;, —tl)+ (a, a +a)hi.

“1—91

It directly follows that the approximate values of the coordinates for /29
point 3,determined by formulas (3.4) - (3.6), differ from the real values by
an amount on the order of h2. A similar result is obtained for Rj

We can determine s3 on the basis of the functional dependence s = s(R).
In practice, the case when this dependence is defined analytically must be
regarded as comparatively rare. If the function s(R) has no distinctive fea-
tures, then the orders of accuracy of s and R will coincide.
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Most frequently, however, this function is given in the form of a
table, from which s3 is obtained by interpolation. Let us assume that a
step in this table is on the order of h; from this point on, we shall assume
that this assumption is fully valid. The interpolation formulas must be
selected so as not to decrease the order of accuracy of the quantities to be
computed. It is known that a linear interpolation formula has a residual
term on the order of h2, and a quadratic term on the order of h3. It thus
follows that for the first approximation linear interpolation is sufficient
for computing s3. Quadratic interpolation is requisite in a recalculation.

In any case, s3 is obtained in the first approximation with a residual
term on the order of h?. It can be readily seen that formulas (3.9) yield an
error on the order of h? for As; and Baj.

In order to make a recalculation, it is necessary to compute o3, Bi, Ra’,
F3, M3. They may be computed by means of sz, Az, Bi, t3, rz, i.e., they are
functions of these five variables. 1If these functional dependences have no
special features, then a3, Bz, Ra', F3, M3 may be obtained with the same degree
of accuracy.

Let us now investigate the recalculation process. On the basis of the
quadratic formula of a trapezoid, we may write

a; + : 2
Fom= = S — 1) — T (6 — 1),

2

. . . d“a R
where o' is the second derivative of EEg-along the characteristic taken at a

certain intermediate point. The quantity o3 which is included in the first

term on the right side is the exact value of o at point 3. We know its approxi-
mate value a3* which differs from the precise value by a quantity on the order
of h?:

oy : ol fh?,
where f is a finite quantity. We thus have

a | a :
171 %y
,‘:‘ —— rl =

(h— )= Lweaty— 1) — Tz (ta— 1),

2
or, since t3 - t; ~ h, /30
a,_+a°
f,—f;=—2i(ta—11)+mhs.
Similarly, we have

Tg—1ry = E'_:;F’.(ts_ts)_*_nhs*

By repeating all of the previous procedures, we find that each quantity at point
3 will differ from its exact value by a residual term on the order of h®, as the
result of the recalculation. In particular, it follows that the recalculation
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quantity - i.e., the difference between the second and first approximations -
is on the order of h2.

These estimates are purely local in nature. Thus, if we return again to
Figure 9 and assume that the initial data on the line AB are defined absolutely
precisely, we find that the dashed line closest to it will be computed with an
error on the order of h3. This means that if we divide the AB section into
areas which are twice as small, the error of the quantities on the closest
line decreases by a factor of approximately 8. This line will not coincide
with the o0l1d line; it will be twice as close to the line AB.

If we are interested in the error at a certain fixed point in the plane

r, t - for example, at the point C (Figure 9) - the situation will be somewhat
different. If point C is located (with the given division) at a distance of
m steps from the line AB, then -~ in round numbers —-- the error at

this point will be m times greater than the error at the points closest to the
line AB. With a decrease in the step h, the error at the closest points de-
creases proportionally to h®, but the number of steps up to the point C in-

. 1 . .
creases proportionally to ==, so that finally the error at point C decreases

proportionally to h?. Thus, the error at a fixed point on the plane is on the
order of h?.

This entire line of reasoning regarding the order of accuracy still does
not provide us with the slightest idea of the actual error of the computational
results. We shall begin the investigation of this problem by determining what
advantage the complete expressions for the residual terms might have for us
(if we knew them). In this connection, we would like to make a small digres-
sion.

By way of an example, let us examine any quadratic formula - for example,
the formula of a trapezoid:

Xy

V Fdx = 2 (fo + F) — 2o f.

Xo

the second term on the right is a residual term; the second derivative f" /31
must be taken at a certain intermediate point which was previously unknown.
How may we employ a residual term to estimate the error in the formula?

If the exact analytical expression for the function f(x) is known, such an
estimate does not entail any particular difficulty. By differentiating the
function of f twice and finding the maximum and minimum values of the second
derivative of f" in the (xp, X)) segment, we may establish the upper and lower
boundaries of the residual term. But how may this be, if we do not know the
analytical form of the function of f (for example, if this function is given
by the table)?

Several handbooks on numerical analysis recommend that the higher deriva-
tives included in the residual term be estimated by means of suitable difference
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formulas in this case. TFor example, in our case we may employ the approxi-
mate equation
f.zfo-2f1 +fa
2 )

Using this formula to determine the second derivative, we may thus estimate
the residual term.

If we substitute the approximate formula given above for the second deriva-
tive in the residual term of the trapezoid formula, we arrive at the following
formula after several simplifications:

{ fax=26f,+ 81— ),

Xs

which in its turn represents a certain quadratic formula. Thus, the attempt

to determine the residual term by means of a difference formula has led us
simply to a calculation of the same integral by means of another, more precise,
quadratic formula. The latter formula has its own residual term, and the en~
tire question of determining the error simply eludes us even more, and has by
no means been solved.

It does not follow from this, however, that such a method of determining
the error has no value. On the other hand, a comparison of the results ob-
tained by two different formulas presents a very strong argument in favor of
the fact that the calculation was quite accurate. We need only note that this
method cannot be regarded as completely faultless.

In addition, there is mno point in employing only the formulas which are
obtained by determining the derivatives included in the residual terms, in
order to have such control. We may employ another formula with the same success,
only if its order of accuracy is greater than the order of accuracy of the
"working" formula. For example, in order to control the accuracy of the trape-
zoid formula, we may employ a quadratic formula such as the following: /32

| Fdx= 2 (Lot 130 + 13— ).

Xo

It is evident that we may apply such a method for determining the error to
the process described in the preceding section. For this purpose, it is advan-
tageous to employ a quadratic formula compiled on the basis of three non-equi-
distant points, which was pointed out by D. Yu. Panov®. We shall present it

in a somewhat different form.

Let the wvalues fo’ f1, and f£f» of the function f(x) for the three values

%
Transactions of the V.A. Steklov Mathematical Institute (Trudy Matematich-

eskogo Instituta imeni V.A. Steklova). Vol. 38, 1951.
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Figure 11

X 5 X1, and xy of the independent variable x be designated by f o’ £, fo.
L8t us calculate the following quantities:

fo— ho—x)—he—x)

Xg — X
f; — f1(xz — Xo) — fo (xa — x1)
Xy, — Xo ’

It can be readily seen that fp* is the result of linear extrapolation of the
function f(x) to the value x_ using the points x;, X;. In exactly the same
way, fo* is the result of the same extrapolation to x2 using the points x ,

xj. Let us now integrate the function f(x) over the (x ,xy) interval according
to the trapezoid formula, taking f P f *,f5; f ,f£2% In turn as its value

at the end of the interval:

11=(x2——xo)m,
o= (o x 2 T E,
Is = (5, — %) fo+1; )
The quadratic formula has the form
'gtf(x)dx= l‘—+l§’i'-l—' (4.1
Xo

Let the points 4, 5, 6 (Figure 11) be now calculated from points 1,2, and 3.
We can determine the error at point 6 by integrating the relationships along
the o-characteristic with respect to points 1, 4, 6, and the relationships along
the B-characteristic with respect to points 3, 5, 6. The divergence between the
results obtained with the formulas in the preceding section and these control
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calculations indicates (approximately) the magnitude of the residual terms in
the first formulas.

There is no point in thus controlling each calculated point; this would /33
mean that we change from the formulas in the preceding section to different,
more precise - but considerably more cumbersome - formulas. The basic calcu-
lation must be performed in the customary way, and the control method presented
must be employed from time to time in order to trace the error.

One important stipulation must be formulated in connection with the use of
quadratic formulas having increased accuracy. These formulas may only be
effective if the functions to be integrated are quite "smooth", i.e., if a, B,
R', F, M change quite evenly along the characteristic. If they undergo sharp
jumps and bends (such cases are encountered quite frequently in practice), then
the use of more complex quadratic formulas loses any meaning due to an excessive
increase in their residual terms.

Another method of determining the error consists of repeating the calcula-
tion for a certain region by a different step. If it is found as a result that
the step decrease does not lead to a significant change in the results, it may
then be concluded that this step is sufficient within the framework of the
accuracy assumed, i.e., the residual terms may actually be disregarded. If
there is considerable divergence, then new, more precise values for the desired
quantities may be obtained from a comparison of the results of these two mis-
calculations. Let a certain quantity f be calculated with a certain step h and
with another step - for example, 2h. 1In the first case, the approximate value
£(1) is obtained for it, and in the second case - £(2), Let the standard
working formulas have residual terms on the order of h2 (just as in our case).
We can then write

[=f"+ mhe,
f=F? -+ 4mp2,

where m is a certain coefficient. By excluding mh? from these two equations,
we obtain
4FL) _ £(2)
fo AT
3

It is evident that this value will not be accurate (the values of m in the equa-
tions given above do not necessarily coincide), and that the residual term /34

for it will have a higher order of smallness.

Both methods presented for determining the error make it possible to
select the requisite step at the beginning of the calculation, and then to
control the accuracy from time to time. However, they are quite cumbersome.
It would be very desirable to have more "operational" criteria.

One of these criteria is related to the possibility of computing the
Lagrangian coordinate R both along the o-characteristic, and along the B-charac-
teristic. The small difference between both results indicates to a certain ex-
tent that the correct step was chosen. Due to the fact that it requires a
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Figure 12

minimum of additional computations, this method is quite convenient, but its
application is limited by another factor. The residual terms in formulas

(3.7) contain higher derivatives of R' along the characteristics - for the

first formula along the a-characteristic, and for the second formula, along

the B-characteristic. 1If the derivatives in both directions are close to one
another, the residual terms will be close, so that both formulas identically
yield accurate results. On the other hand, if the higher derivatives of R'
differ greatly along both sets of characteristics, then the residual terms

will differ greatly in terms of magnitude. In this latter case, it is advan-
tageous to compute R along the characteristic where R changes more "smoothly" -
i.e., where its derivatives are smaller. To obtain complete agreement between
both results derived from computing R, we must decrease the step above the

power which is necessary to achieve the required accuracy (at least with respect
to R). Thus, we must employ the criterion of the agreement between R calculated
along unlike characteristics only when R' changes equally "smoothly" along both
sets of characteristics.

The recalculation quantity-- i.e., the difference between two suc-
cessive approximations of one and the same quantity - can provide the second
criterion. The smallness of the recalculation represents a certain indication
that the second approximation is close to the accurate value. As was shown
above, the recalculation is on the order of h2, while the residual terms are on
the order of h3. Therefore, there is no point in having the recalculation
vanish in general (within the limits of the decimals retained) -- this would
indicate a decrease in the step at which the necessity of recalculation is
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generally eliminated. On the other hand, we have seen that the total compu-
tational error is on the order of h? - the same as the recalculation quantity.
Therefore, in a certain sense it may be stated that the total error and the
recalculation quantity are proportional to each other.

It is true that the coefficient of this proportionality depends most /35
strongly on the change in the quantities to be calculated, since the residual
terms and the recalculation quantities are expressed in a completely different
manner by means of the higher derivatives of the functions included in the
computation. Therefore, it is absolutely impossible to formulate any universal
criterion for a valid recalculation quantity. However, if a series of uniform
problems is solved, a very careful analysis of the solutions for the former
problems may establish the dependence between the recalculation quantity and
the error in different regions, and this dependence may be utilized to solve
the subsequent problems in the series.

In spite of the fact that each of the methods mentioned above for deter-
mining the error may not individually be called absolutely accurate or reliable,
the combined use of them leads to almost reliable conclusions regarding the com-
putational accuracy. We must now supplement this discussion with several prac-
tical considerations.

If a certain methodindicates that the steps in a network of characteristics
are too large, they must be decreased. Steps may be changed in both sets inde-
pendently of each other. If, for example, recalculations of A increased exces-
sively, then the step must be decreased along the a-characteristics, since A
is integrated along them. The step is decreased by "inserting" additional
points obtained by means of (quadratic) interpolation along the characteristic.
We must thus take the fact into account that a change in the step along, for /36
example, the o~characteristic may be indicated in the recalculations of B,

generally speaking.

By way of an example, let us examine Figure 12. Sections of the charac-
teristics AB and BC serve as the initial data here. Let us assume that during
the computational process it has been found that the steps on the DE section
of the B-characteristic are large. If we employ the recalculation quantities
in order to control the step, then - taking the fact into account that the re-
calculation quantity is proportional to the square of the step - we may compute
a new step which is valid under the given conditions. Let us assume that the
step must be decreased twofold at the two intervals which are closest to the
point E, and that it must be decreased threefold on the third interval. By in-
terpolation along the computed points, we may "insert" mew points, from which
new o-characteristics may come (they are shown by the dashed line in Figure 12).
Such "insertion" is shown on the FG section of the a-characteristic.

The step must be increased as well as decreased during the computational
process. If any factors indicate that a larger step is valid on the given
section, it must be immediately increased, since an excessively small step
leads, on the one hand, to an increase in the total amount of computational
work and, on the other hand, produces the conditions for computational errors.
The step is increased by simply discarding certain points.
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5. COMPUTATIONAL FORMULAS FOR SPECIFIC EQUATIONS OF STATE

Let us commence with an ideal gas, i.e., a substance which satisfies the /37
equation of state

p:kp". (5-1)

Here » 1is a constant (adiabatic index), and k is the entropy function k = k(s).
Let us first find the Riemann invariants for this substance. We have

or
dp=xLdp 4 Lgp
[ k
We thus conclude that (see section 2)

02==x—;. (5.2)

We find that equation (2.4) has the following solution
2

*—1

o=

c.

Actually, first of all we have

d_ e P
" pd"+ kpcdk. (5.3)

In addition, it follows from (5.2) and (5.1) that

c? = xkp*—1

or, after differentiation,

and we thus have

¢
Ldp— dec — .
P P % —1 ¢ (x—1)k di

Substituting this expression in (5.3,and allowing for the fact that ?Z =-%; /38
we obtain

¢_1£= 2 K- [ - 2 L ¢ b
pC x—idc+ (1.k (‘t—i)k)dk 'n.—-ldc %(x—1)k dk,

or
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2 __dp [
d(u—lc)_pc+x(x—i)k dk. (5.4)

Making a comparison with (2.4), we find that we may assume

o= 21(,-. (5.5)

Let us introduce the following notation

h_1.+1
=1
We thus have
h+l= 2 ] h_l= 2 ’
W —— % —4
b1
h—1

Consequently, we may write
A=(h——l)c+u,
(5.6)

B=(th—1)c—u.

In order to reduce the computational formulas in section 3 to a more con-
venient form, we may introduce a mnew entropy variable and a special function of
pressure. In order to do this, we note that the following follows from (5.1)

and (5.2):

Consequently, the speed of sound c is represented in the form of the pro-
duct of two coefficients; the first coefficient depends only on entropy, and
the second coefficient depends only on pressure. Let us designate these co-
efficients as follows:

i3 o (5.7)
v=~k%, z=Vxp""
We then have

¢=uvz. (5.8)
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o

p== ’zh-{-l_ (5-9) /_39_

It can be readily seen that for p we obtain the formula

_,? - (5.10)
p= "
If we introduce the notation
_h
ad=x *,
then formulas (5.1) and (5.10) can be written as follows:
h—)
p:—.—‘i’.zh‘l-l' p:—_.—azz ! (5.11)
% vl

Differentiating the relationship k = v2X following from (5.7), we obtain

For the last term in (5.4), we thus obtain

¢ dk 2% ¢
Dt D) ;—dv:(h—l)zdu.

Consequently,
dith—1)c) = ;’—:’4_ (h — 1)z dv,

and the relationships for the characteristics can be written in the following
form

dA = Fdt + (h— l)zdv.}

dB = Fdt 4 (h— 1)z dv. (5.12)
In addition, it can be readily shown that
3—=
a=A——=(A+B),
B=~—[B——3“‘ A—I—BJ,
4 ( ) (5.13)
u:t@_
2
_ _A¥B
22—

Finally, for R' we obtain the following expression from (5.8) and (5.11):
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Po fo vt Po U

We may now write the complete system of computational formulas.
us assume that we know the quantities t, r, R, A, B, u, v, z, a, 8, F, R'
at points 1 and 2. The same quantities at point 3 may be computed according

to the formulas:

ty=th—Phdnon, (1, Bo)
a1—fs
rs=ri+o(ls—t) =rs+ B(ts—t), (a1, By)
Ry=Ri+Ri(s—t)=R—Ri(a—t), (R Ry
U3 = 0 (Ry)

Ag=A + Fi{ts— )+ (h— 1)z (1 —0y), (Fi, 21)
B3 = B; + Fa(ts— &) 4 (h— 1)z, (vs— v3), (Fay 29)

Qg = As”_a - (As + By),

* }
3—=
[3;,:——[33—-— 4 (A3+Bs):lu (5.14)
A; — B,
4y =S5
_ As+ By
23 = ——),
2(h—1)vs
F3 =__vuﬁ::23,
h
PR WY
Rs Po Ua (Ra)

The parentheses at the right contain thequantities which have been re-

placed by the average quantities in the corresponding formulas during the re-
o1 + 03
and

calculation (for example, in the first formula we have used a3 = — 5
B2 + Ba

B3 =— — instead of a; and 85). The notation vz = v(R3z) indicates that

the quantity v is obtained from the previously known functional dependence

v(R) (for example, by interpolation according to the table).

v =

The second equation of state which we shall examine differs very little
from (5.1). It has the following form

P =a(kp* —p), (5.15)

where x , a, pg are constants, and k is a function of entropy. In many cases

it may be assumed that liquids and even (under certain conditions) solid bodies
One distinguishing feature of equation (5.15)

satisfy such an equation of state.
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is the fact that the pressure p can vanish for non-zero k and p. This leads
to certain phenomena (so-called separation) which are not characteristic

of substances with the 'gas" equation of state (5.1).

Equation (5.15) differs from (5.1) only due to the presence of a constant /f41
component. On the other hand, the pressure p is only included under the sign
of the derivative in the differential equations (2.1). It thus follows that
quantities which may be defined by relationships (5.6) may be used as the
Riemann invariants for a substance with the equation of state (5.15). Just
as always, the square of the speed of sound c is obtained by differentiating
the pressure p over the density p (for a constant entropy variable k). This
may be readily confirmed by performing the appropriate computatioms.

In order to formulate a complete system of computational formulas, for
equation (5.15) we shall now determine the special variables which are, in a
certain sense, similar to the variables z and v which we introduced for an
ideal gas. In order to do this, let us first of all stipulate that py, which
is included in the definition of the Langrangian coordinate (3.2), is equal
to pg from equation (5.15). Then removing pp* from the parenthesis in the
right part of (5.15), we obtain

p=0b(k"—1), (5.16)

where b is a new constant, and § = ﬁ—u
0

According to equation (5.16), the pressure p vanishes in the case of
k =1 and § = 1. We shall call this state of the substance under considera-
tion the initial state.

Differentiating (5.16) over p = pyd, we obtain

= 2 gy, (5.17)
Po

In particular, designating the speed of sound in the initial state by c¢g, we
have

c=xZ,
fo

or
b= "%

Therefore, equation (5.16) can be rewritten in the following form

2
p =2 — 1), (5.18)

and relationship (5.17) can be rewritten in the form

39



x—1 1

¢ = clk¥ T =l (kB*) * - B,

r—1

or L a1
¢ = cok™ (R8") ™.

According to (5.18), the quantity ké* is a function of pressure p.

We can thus see that,just as previously, the speed of sound c is repre- /42
sented in the form of the product of two factors - one of which depends only
on entropy, and the second of which depends only on pressure. We may set

L 1
P = cok‘ll’ Z = (kat) 2% N

If we define h = : f i, we then arrive at the following relationships
pac? .
p="2E"—1), (5.19)
¢ == vz, (5.20)
zh—l h—1 (5.21)

8:0: ’ P=Poczz ’
v

v2
which are similar to formulas (5.8) and (5.11). The difference lies only in
the constant component in the formula for p, and in the fact that we now have
poc02 instead of the dimensionless quantity a?. The reader can readily see
that the computational formulas (5.14) remain in full force for the equation

of state (5.15).

We should note that if v has a formal nature in the case of an ideal gas,
it then has a specific physical meaning for a substance with the equation of
state (5.15). Actually, it follows from (5.19) that condition p = 0 is equiva-
lent to the condition z = 1; formula (5.20) shows that them v = c. Consequently,
if we examine a certain volume of our substance which is in a balanced thermo-
dynamic state, and then use a reversible adiabatic process (i.e., for constant
v) to convert it to a state of zero pressure (or if we discharge it, as they
say), then in this new state the speed of sound c equals v. We may therefore
designate the latter quantity as the discharge speed of sound.

Let us investigate the following equation as an example of a more complex
equation of state

p="b(e*+ k). (5.22)

Here b, U, x are constants and k is the function of entropy. This equation may

be regarded as a type of "interpolation" equation - for small k the second

term in the parenthesis may be disregarded, and the properties of the substance
would be similar to the properties of an ideal gas with the adiabatic index u.
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On the other hand, for large k the second term plays the main role, and in
terms of properties, our substance approximates an ideal gas with an adiabatic
indexx . We shall assume, for purposes of definition, that u>x>1.

Differentiating equation (5.22) with respect to p, we obtain /43
c’=bp(p"“ +1kp=-x). (5.23)
®

Let pyg be a certain constant initial demsity. As is customary, we designate

the ratio %G-by §. In addition, let us introduce the following notation:
p—x=m, =p "k=uv, pbpt= at
[T
Formulas (5.22) and (5.23) then assume the following form
2
p=a_au(1+£va—m), (5.24)
3 x )
0220—28“—1 (l_{_va—m). (5-25)
Po
Let us first find the Riemann invariants. For this purpose, let us set

—m
H

08_"' =Y
so that

-
-

8 =0"y, p=p"y.

Substituting in (5.24) and (5.25), we may express p and c¢2 by v and y:

[
p:.a_aumyl‘-(l+iy—m)’ (5.26)
» *
-1
C’=:—’»U m _l/“—l (l +y_m). (5.27)
[}

Let us find the total differential of expression (5.26):

» x

dp = @yt (1 y=mydy + L o7 e (1 4 rym) do.
] 5 k3

In addition, by means of (5.27) we readily find that

[

pt T
pc = V‘FE;U 2un y*i—VH'y_"' .
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And we now have

dp E’_ l‘—l 21-—p—l [l N l+ Y —m
2oy Bym Vl-i-y'"'dy+ L /~u T 4 (5.28)
ke o w | Vity™

We must separate the total differential from the right part of equation /44
(5.28). 1In order to do this, we may determine the function ¢(y) by means of

the relationship

p—3

de=y * V1+y™dy. (5.29)

The first term in the right part of (5.28) can then be rewritten in the follow-
ing form

Z =t & —~1 /& Tam
a_vzm dtp:d(' ‘L_UW'CP)__P'___ —0v (pdv,
o Po J 2m Po

and, consequently,

v
— pa - ol a1 44—
@ _ 4 ‘ﬁv”"cp)—}——i—l/‘fv O I S e P P
pc o m Po V1+y_”‘ 2

Comparing the latter relationship with (2.4), we find that our goal has

been achieved - dp is represented in the form of (2.4). We thus have

_ u—l

—'L// (5.30)

— 2x—p—1 p—t {4+ L y_m
M i a? 2 3 * p—1
= — —_—0 y — — — (P
m Po Vity™ 2

(5.31)

We may now perform numerical integration by the method presented in
Section 3. In order to do this, we only need to have the table of the function
¢ (y) and,secondly, we must be able to compute M very simply with respect to the
quantities v and ¢ (in order to find o and B8) and § (in order to find R'),

The function ¢ can be set equal to the following relationship, accord-
ing to (5.29):
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¥ p-3 Y x—3
<P(y)=Sn VIt qmdy = Sn "V I+ g dy,
; b (5.32)

in the case of x>l,we will have 153 >~1, so that this integral converges. 1If

it belongs to a number of Chebyshev functions which are expressed by means of
elementary functions, we must turn to numerical integration in order to com-

pute it. At the point y = 0, the function ¢(y) may have a special character-

istic. However, in the vicinity of this point it may be readily expanded in

fractional powers of y.

For the computation of M, ¢ and e, it is possible to employ the following
relationships which follow from the definition of y and formulas (5.27), (5.30),

(5.31): /45
— 1=
VAL
p—1
2 ® o —m
‘=21 Y (1+"y )_*‘—1
® mL o)V 1y 2 I
b1 -
c_y® Vity™ -39
@ ? (y)
bkt
c3 Y2 Yiqy
1 ?(y)
o™

The right sides of relatiomnships (5.33) are known functions of y; con-—
sequently, the left sides are interrelated by a functional dependence. We may

— 1

compile a table in which l//égv o, will be the argument, and the combina-

a?

¢ c8
tions M, 2’ 1 will be the functions.

o™ @

Ol e

If v and ¢ are known, we may then find'% M, and consequently M, from this
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table. On the same line we then obtain jg-, i.e., c¢. TFinally, we find

< 0
=N o lo:
©

which makes it possible to obtain the product ce which is requisite for com-
puting R'.
With such a table at our disposal, no difficulties are entailed in the
- i
computational process. If the powers lfﬁ and o are fractional, it is also
1-u 1
recommended that a table be complied in order to compute V2m and o0

When discussing the methods for computing shock waves, contact discon-
tinuities and expansion waves at a later point, as a rule we shall confine
ourselves to only ideal gas and avoid cumbersome formulas. However, the in-
terested reader will have no difficulty in transferring these methods to other
equations of state, employing the formulas presented here for computing the
Riemann invariants.
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6. SOME PRACTICAL CONSIDERATIONS /46

We are only investigating computations 'by hand" which are primarily per-

formed by either the customary calculating machine or one with an electric
drive. Let us commence with the form of the notation of the intermediate re-

sults.

All of the notation is written on sheets of paper (preferably graph paper)
which are laid out in rectangular squares. These squares are of such a size
that the twelve numbers t, r, R, u, 2, v, A, B, a, B, F, R' pertaining to one
point [we are investigating the problem with the "gas" equation of state (5.1)]
may be arranged inside each of them. For example, these numbers within the
square may be arranged in the following order:

t r v z
R’ R u
B A

F g a

The horizonal series of squares contains points lying on one a characteris-
tic; the vertical series contains points lying on one B-characteristic. The
coordinate t increases from left to right and from top to bottom at the points.
The diagonals going from the left upward to the right represent spacelike lines;
the quantities r and R increase in this direction. In particular, squares con-
taining points 1, 2, and 3 (see Figure 6) will be arranged as follows:

T

If the squares for points 1 and 2 are filled, then the computational form-
ulas (5.14) make it possible to fill the square of point 3 successively. Let us

present an example of this computation. Let us investigate the cylin- /47
drically symmetrical motion of an ideal gas with the adiabatic index x ='§; we

shall assume that e; equals unity. The dependence between the entropy quantity
v and the Lagrangian coordinate R can be given by the formula

5 8
?

v==(£%)lv?
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(The reasons for selecting the function v(R) will be clarified below). Let us
assume the following values for t, r, R, A, B at points 1 and 2:

4, = 1,0000, & = 1,0000,
ry = 1,0000, rp = 1,0500,
Ry = 1,00000, R, = 1,05000,
A, =2,6041, A, = 2,7343,
B, == 1,1755, B, = 1,2343.

It is primarily necessary to compute the quantities u, v, z, a, B, F, R' which
are lacking for points 1 and 2. This may be done by the same formulas (5.14)
and the well-known function v(R). We may then subsequently compute point 3.
The results may be graphically presented as follows:

1,0500  1,0000 0,45827  0,8660
0,3960  1,05000 0,7500
41,2343 2,7343

—0,2835 0,3531 14,1469

1 67 35 42

1,0000 1,0000 0,44258 0,8540 1,0739 4,0676  0,45063 0,8438
29 467 86

0,3779  1,00000 0,7143 0,3617  1,02555 0,7190
5 196

1,1755  2,6041 1,1821 2,6202

6 3 88

—0,2700 0,33€3  1,0923 —0,2546 0,3388 1,0993

Two values are given for each quantity at point 3 - the first approximation
and the recalculation, In order to avoid making the notation more cumbersome,
only the last decimals - which change during the recalculation - are written
in the "recalculation" values. Thus, in the first approximation A3 is equal to
2.6202, and after the recalculation it equals 2.6196. The quantity F3 does not
change as a result of the recalculation.

A specific amount of decimals are selected for each quantity, and the re-
maining ones are rounded off. When solving the problem of selecting the number
of places, we must start with the requirement of over-all accuracy in the desired
solution. This may be formulated in different ways. It is most reasonable /48
to impose the conditions of accuracy on the "physical" quantities u, p, p, but
there are other possible approaches to this problem.

We feel it is most advantageous to have the requirement for accuracy im-
posed on quantities which directly participate in the computation - for example,
A and B, The discussion presented below illustrates the solutjion for the
problem of selecting the number of places under these conditions in the
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numerical example presented above.

We shall start with the fact that the quantities A and B contain four
decimals (i.e., four places after the comma). We should note first of all that
terms such as F At are included in the formula for computing A and B, The
quantity F is close to -0.3. This means that in order to provide for (with
a certain margin) four correct decimals for the product F At, it is necessary
to retain four decimals for t.

The quantity F is encountered only in the product F At. The differences
At along both characteristics equal 0.0667, i.e., they have three significant
digits. Consequently, it is sufficient to take four significant digits for F,
because a further increase in the number of digits cannot increase the ac-
curacy of the product F At.

In a similar manner, when investigating terms such as (h-1)zAv, included
in the same formulas, we find that we must take five decimals for v, and five
significant digits for z.

The product o At has four accurate decimals (under the condition that o
has no less than four significant digits). It thus follows that we must take
four decimals for r. We thus obtain five decimals (the last is problematical)
for R.

The quantities v and R are related by a functional dependence. When there
is a change from point 1 to point 2, R changes by 0.05, and v changes by
0.01569. In round numbers we find that the increase in R is three times greater
than the increase in v. This means that the fifth decimal in R may be three
times less accurate than the fifth decimal in v. Consequently, in our case the
requisite accuracy for v has been insured.

Since the increases in At have three significant digits, there is no
point in selecting more than four significant digits for o, B8, R'. On the
other hand, as the reader may readily ascertain, the computational formulas
absolutely insure this accuracy for these quantities under the conditions that
A and B have four decimals. This pertains to the quantities F and z.

Thus, the problem of selecting the number of decimals has been solved. We
should emphasize that the discussion has covered purely computational errors oc-
curring due to the intermediate results being rounded off, and no mention has
been made of the error entailed when the residual terms of the computational
formulas (5.14) are discarded. This latter form of error was investigated /49
in Section 4; in our specific case, it may be discussed as follows.

We have taken points 1 and 2 from an exact solution of the system of equa-
tions (2.1) given by the formulas
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e (6.1)

-
-

The reader may readily see that these functions actually satisfy equations
(2.1). He can readily verify the validity of the following relationships also:

°=(a) K- (6.2)

The equations for the characteristics have the following form:

V7
a: r=&t 7,
6.
s (6.3)
B: r = )\2t i ’

where A and Ay are arbitrary constants.

For the o~characteristic passing through point 1 (r=1, t=1), we have
Ai=1, For the g-characteristic passing through point 2 (r=1.05, t=1), we
obtain Ap,=1.05. Solving equations (6.3) together, we find the exact co-
ordinates of point 3 and then, substituting them in formulas (6.2), we find the
quantities A, B, R, v at this point. The computations yield:

t = 1,06667,

r = 1,07304,

R = 1,024695,

v = 0,450359,

A = 2,61966,

B = 1,18256.
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After comparing these numbers with the results derived from numeri- /50
cal integration, we find that there is good agreement. The divergence which
occasionally occurs in the unit of the last digit lies within the framework of
computational error.

It is interesting to repeat these computations by means of another step -
for instance, a duplicate step. In this case, we obtain

1,1000 41,0000 0,47376  0,8776
0,4158  1,10000 0,7857
1,231 2,8645

—0,2970  0,3699  1,2015

479 45 781 50

1,0000 1,0000 0,44258 0,8540 1,1512 41,1384  0,45899 0,8331
95 4852. 26

0,3779  1,00000 0,7143 0,3436 1,05230 0,7248
87 40

41,1755 2,6041 1,1872 2,6368

04 49

—0,2700 0,3363 1,0923 0,3424 14,1072

The formulas for the exact solutions lead to the following results:

£ =1,13438,
r =1,14765,
R—1,048809,
v =0,457903,
A=12,63457,
B =1,18929.

The divergence in the results is very distinct here, and thus the duplicate
step is excessive.

The reader may readily ascertain that the recalculation quantities in the
second example are exactly four times greater than in the first example, where
they comprise six and four units of the last (fourth) decimal for A and B. We
may thus conclude that if we had to solve the problem in which the change in
the quantities is close to those given by formulas (6.1), then close to point
r=1, t=1 (or one corresponding to it) recalculations of 5-10 units of the last
decimal would result for A and B.

The computational formulas are significantly simplified in the case of so-
called isentropic motion - i.e., motion when the entropy is the same through-
out the entire mass of the substance. The function v(R) may be reduced to a
constant, and the last terms vanish in the formulas for A and B. The necessity
of computing v, R, R', 2z, u is thus eliminated.
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The arrangement of the point thus assumes the following form /51

r ¢
B A
B8 a
F

and the computational formulas are reduced to the following:

ty= ayly —Blatra—n , (@ B
a,—B,
rs=rita;(ts—h)=ry+Ba(ts—1t), (er, B)
Ay = A, + Fy(ts— 1), (Fy)
By = By + Fy (t3— 1), (Fa
ag = Ay — 321(’48 + By),
B — [Bs~3;*(As+Bs)]',
Fy= v , Br—ar .
4(h—1) P

In the flat case (y=0) there is a further simplification, F=0, and the
formulas for A and B change as follows:

Aa = Ab
83 = Bz.

It is true that Riemann has already studied this last case (flat isentropic
motion) in detail. He indicated several cases when the solution may be ex-
pressed in closed analytical form*,

We may also note the case x =3. As the computational formulas have shown,
then a=A, B=-B, which also simplifies the calculation.

% See Landau, L. V., Lifshits, Ye. M. Mechanics of Continuous Media
(Mekhanika cploshnykh sred), Section 98, Moscow, 1953.
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We already had occasion to note that problems in which the amount of
points to be computed may amount to several thousand cannot be regarded as an
exception. It is apparent that the problems of control, opportune discovery,
and correction of errors is of very serious importance here. An error which
is not discovered in time may entail the necessity of repeating the calcula-
tion for a large part of the problem, and sometimes for the entire problem as
a whole.

The method of computing "on two hands'" is extremely irrational, in /52
spite of a certain effectiveness, since it leads to duplication of the entire
computational efforts. It is recommended only in individual, particularly im-
portant parts of the problem (for example, when computing the disintegration
of the discontinuity). Methods which control the "smoothness" and "evenness'
of the change in all the quantities along the characteristics are extremely
advantageous for purposes of a '"concurrent" and "working" control. It is
clear that this method is only applicable when the initial data of the problem
are quite "smooth."

If the steps along the characteristics are approximately the same, then
the values for each of the quantities (A, B, v, u, z, et cetera) must change
from point to point by approximately the same value. The changes in these
increases must occur systematically. Each "jumping out" of any quantity
points to the necessity of carefully checking the computation; if no errors are
discovered, then the "jumping out" must be clarified.

It is recommended that the recalculation quantities be constantly watched
during the process; in a certain sense, they not only indicate the residual
terms, they also represent a very effective method for controlling the cor-
rectness of the calculations. As a rule, each computational error leads to
an abnormal increase in the recalculations and each "jumping out” of the re-
calculations must be immediately investigated. The recalculation quantities
must not only be small, but they also must change "smoothly'" from point to
point, under the condition that the steps of the network also change
"smoothly."

If an error, which was allowed at an earlier stage and remained unnoticed,
is discovered during the calculational process, then the entire region between
the characteristics emanating from this erroneous point (i.e., the propagation
region of this point) must be calculated again. However, if the error is small,
so that its square may be disregarded, then the correction of the results may
be frequently simplified considerably.

From the general theory of hyperbolic systems, it is known that small
perturbations are propagated along the characteristics, with no change in their
magnitude (in the first approximation). The perturbation of A is thus propa-
gated along the o-characteristic, and the perturbation of B is propagated
along the B-characteristic; perturbation of R and v is propagated on the tra-
jectory. Therefore, after the erroneous point is corrected, the increase in
A must be added to the values of A at all points of the o-characteristic
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emanating from the corrected point. The same procedure must be followed for B.
The situation is somewhat more complex for R and v, since R is not integrated
on the trajectory, but along the characteristics. If only v 1is incorrect,
then this error will not be propagated in general, since at all other /53
points v is again determined from the functional dependence v(R). The quantity
R must be corrected along those characteristics over which it was integrated.

It is recommended that all the points to be computed be plotted on a
graph. A graph of r, t, which presents a particularly graphic illustration of
the computational procedure, is one of the main graphs. The scales along both
axes must be selected so that the distances between adjacent points are not
small, in order to make an accurate determination of the direction of the
characteristic section between them. These sections are drawn along a ruler,
and the entire network of characteristics is laid out on the graph during the

computational process.

It is also recommended that graphs of A, t and B, t be drawn in order to
provide more comprehensive control. It is true that the features of these
graphs are complex as compared with the graph of r, t (they may '"be super-
imposed on each other"), but they make it quite easy to verify the "local"
smoothness of the quantities.

Different factors may be encountered during the computational process. We
shall indicate two of them.

If the characteristics of one and the same set intersect each other, this
indicates the development of a shock wave (when there are no computational
errors). The steps which must be taken in this case will be presented in the

following sections.

As was already indicated previously, the pressure can drop to zero in a
substance with an equation of state such as (5.15). 1In addition, it may become
negative. As a rule, this indicates the development of a so-called separa-
tion; the methods for computing it will be presented at a later point,
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7. BOUNDARY CONDITIONS /54

The problems of gas dynamics do not always hold for the entire infinite
space filled with gas or liquid. Very frequently it is necessary to compute
the motion of a substance filling a region which is limited in space. One
typical case is the motion of a gas in a cylindrical tube which is covered at
both sides with plungers. Moving, according to a certain law, these plungers
transmit motion to the substance located between them. The law underlying
the motion of the plunger cannot be given as the dependence of its coordinate
on time. For example, the plunger may sustain a specific pressure at its sur-
face. 1In particular, depending on the conditions of the problem, this pressure
may be zero; we are then dealing with a substance scattering into space. 1In
one way or another, a boundary condition arises on the plunger surface.

One characteristic feature of these boundary conditions is that the boundary
moves according to the law gf-= u on the r,t plane, i.e., it is the trajectory.
In other words, there is no flow of the substance through the boundary. This
factor presents certain advantages when computing the motion of a substance
adjacent to the boundary; these advantages lie in the fact that the entropy of
the particles adjacent to the boundary remain constant. Therefore, only one
condition is sufficient for making a complete determination of the motion.
However, it must be noted that this type of boundary condition is not /55
uniquely possible; we shall verify this at a later point. At this point we
shall only investigate a boundary with satisfies the condition %% = u or, which

is the same thing, R = const.

Let us assume that the boundary defining a substance (for purposes of
definition) to the right is given (with its boundary condition). Its motion
may be computed in the following manner.

Let us assume that point 1 on the boundary (Fig. 13) has already been
calculated. We may then compute the entire B-characteristic 1 - 1' in the
usual way. Let us place a certain point 2 on this characteristic. Let us draw

. . d .

a straight line %§'= u; from point 1, and the straight line E% = ap from point
2, and let us determine the point at which they intersect. This will be (in the
first approximation) the following point on the boundary which we shall desig-
nate by the number 3. All the remaining terms in it may be calculated as
follows. We first have R3 = R} and vy = v;. In addition, we select the fol-

lowing relationship along the o~-characteristic 2 - 3:
Ay = A + Fp (s — b)) + (B — 1) 2, (U5 — vy). 7.1

Since we know t; and v3, we may find A3 directly. It is necessary to include
the boundary condition in order to compute Bj.
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Figure 13

Let us formulate this condition as u = u(t) (on the boundary). Then,
knowing t3, we can immediately obtain uj and then B3, because - as may be
readily seen -

BS=A3_'2US. (7~2)

After this, the "formal calculation" of the remaining terms (z, a, 8, F, R')
is performed in the usual way.

If the boundary condition is given in the form of the function p=p(t),
we may immediately obtain the quantities z and c at point 3:

. =t
Z.a=(‘;Ps) : (7.3)
‘Cs—_—'z'i
Ug
We now find
By=2(h—1)cy— A;. (7.4)

The recalculation is performed in the usual way. The coordinates at point
3 are first defined more accurately on the basis of the equations
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rg—ry = ths(ts— ),

ry—ry = dag(ly — t5)

then the quantities Fo and z; may be replaced by the averaged quantities 136
(Fy3 and 253) in formula (7.1), after which B3 may be computed either from
(7.2), or from (7.3) and (7.4).

If the boundary condition is not given in the form of the function u(t)
or p(t), then formulas (7.2) - (7.4) naturally change, but the same goal re-
mains - B must be obtained on the basis of the specific v and A by means of the
boundary condition.

B is integrated for the "left" boundary along the characteristic; A is ob-
tained from v, B and the boundary condition.

Let us give the total set of computational formulas for an ideal gas and a

boundary condition having the form u(t) ('"the right" boundary):

—ant —
tszultl asty -+ ro ’1’ (1, o)

Uh—ay
ra=ry+i(ls—t) =ry + as (ts— ), (1, aa)
Rs =R,
Us = Uy,
Ag= Ay + Fo(ts— b)) + (A — 1) 22 (vs — 1), (F2, 22)
uy = u(ty), (7.5)
Bs = Az — 2us,

ay = Ay — 2% (As + By),

2o AstBo

3 = [}
2(h—1) v,

Fy = — 4%

rs

We must now perform the recalculation (the quantities to be averaged are given
in the parentheses), after which we may additionally calculate

Baz_[B,_3z"(A,+Bs)]. (7.6)

P : 28 v
R -_-“__’(Lﬂ_),
: Po Us \Ry
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For purposes of control, it is advantageous to integrate R along the
section of the a~characteristic 2-3:

Ry = Ry + (ts— tz)- (7.7

R+ R,
2
and to compare the result obtained with the quantity transferred from point

1. '

Point 2 on the 1-1' characteristic is chosen from the general considera-
tions related to the assumed magnitude of the step. Just as previously, /57
we may employ the recalculation quantity as an additional criterion, as well
as the divergence R integrated according to formula (7.7) with the value of
R transferred from point 1. As point 2, it is more advantageous to take one of
the calculated points - for example, the one closest to the boundary. However,
this is not always possible, since the step along the boundary may be extremely
large. We must then resort to "insertions" close to the boundary.

The condition p=0 corresponding to expansion of the substance into space
is an important special case of the boundary condition. If the equation of
state always has the form (5.15), then this condition is equivalent to z=],
We shall call this boundary the free boundary.

Since z=1, then c=v. Thus, both u and ¢ along the free bounary were known
previously. Therefore, after integration of A (in the case of the "right" free
boundary), B is obtained from the following formula

B=2(h—1)v—A.

The remaining computation is performed in the usual way on the basis of formulas
(7.5).

In the case of an ideal gas, condition p=0 leads (for finite v) to the
equation ¢=0, and in addition to o=8. The boundary is a special line, since
the o-characteristics touch the R-characteristic upon this line. It is true
that frequently the motion of the boundary itself is determined very simply - if

dc . . . . .
the derivative I7 at the boundary is finite, then its velocity is constant.

However, the region directly adjacent to it cannot be computed by the method of
characteristics.
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8. EXPANSION WAVES /58

Let us first investigate flat isentropic motion, i.e., the case of v = 0,
v = const. The region on the r,t, plane in which one of the Riemann invariants
(A or B) retains a comstant value is called a simple wave.

For example, let us set B = const 1in the simple wave. Let us investigate
a certain (arbitrary) o-characteristic. Since the corresponding Riemann in-
variants are always constant along the characteristics in the flat isentropic
case, along our a-characteristic A = const will hold. Thus, since B = const,
it immediately follows that any quantity (except for the coordinates t, r, R),
particularly o, will be constant along this characteristic. And since the equa-

tion of the characteristic is %%'= o the characteristic will be a straight

line. Similarly, there will be rectilinear B-characteristics in the simple
wave with the condition A = const. We shall call these characteristics longi-
tudinal (i.e., the a-characteristics in the case of B = const and the 8-
characteristics in the case of A = const). We shall the characteristics of the
opposite set transverse characteristics. We should point out that the trans-
verse characteristics must by no means be rectilinear.

A simple wave is called a centered wave, if its longitudinal characteris-
tics pass through one point (apex of the wave). Figure 14 shows two types of
centered simple waves. After convergence, the first type of wave changes into
a shock wave, but absolutely not into a simple wave of the second type.

Figure 14

For purposes of definition, let us investigate a centered simple wave in
which B = const. We shall use rg, ty to designate the coordinates of the wave

apex. Since o is the angular coefficient of the tangent to the a-characteristic,

and these characteristics are rectilinear, at any point on our wave we have
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y; . by

Figure lba
o =r_,° v
1— 1y
or, assuming that 122
r—Tro
=Ev
t—¢,
we obtain
a=¢. (8.1)

Expressing o and B by c¢ and u, we obtain

u+tc=4%§,
th—1Ne—u=B,
and solving for u and ¢, we obtain
h—1 1
u—TE . B,
1 1
= = = B. 8.2
hE+h (8.2)

Since h>0 always, c¢ increases along with &. It can be readily seen that in
the first type of wave (Figure 14) & also increases with an increase in t for
constant r. In the second type of wave, the opposite is true, and £ decreases
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with an increase in t in the case of r = const. The quantity c changes at the
same side, and since v = const, it can be readily determined on the basis of
formulas (5.11) that in the first case p and p also increases with an increase
in t (for constant r), and in the second case, the opposite is true and they
decrease. Therefore, a simple wave of the first type is called a compression
wave, and a simple wave of the second type is called an expansion wave.

Formulas (8.2) provide a complete solution of equations (2.1) in a cen-
tered, simple wave. Actually, we may express any quantity by u, ¢, and v (we
should remember that v is the given constant). For example, it can be /60
readily shown that-

o oh—1,  h—2

A'—‘2_7T-E4—_7:_B'
_h—=2, 2

B= - £ . B.

The latter relationship makes it possible for us to find the equation for the
transverse characteristics. By integrating the equation

after simple computations we obtain

h—2
r—ro=Mt—to|F —B({t—1,),

where A is an arbitrary constant.

From this point on, we shall only be interested in an expansion wave. Let
us investigate the moment ty at which it is formed (Figure 15). Since the
quantities u, ¢, p, p, et cetera, have different values, generally speaking,
on the longitudinal characteristics defining it, at the moment t = tg these
quantities will undergo a discontinuity at the point corresponding to the wave
apex. A graph of the function u(rx) will have the form shown in Figure 16 at
this moment.

However, the quantities v and B, being constant over the entire region oc-
cupied by the expansion wave, will not undergo a discontinuity.

In addition, it follows from (8.2) that u is always greater to the /61
right of the discontinuity than it is to the left (this is wvalid not only for
the "B-wave" under consideration, but also for the "A-wave').

Thus, in order that the expansion wave be formed from the discontinuous
initial data, the following three conditions must be fulfilled:
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"a 4} Y2 »r

Figure 15

(a) There is no jump in the entropy at the discontinuity point;
(b) One of the Riemann invariants (A or B) is also continuous;

(c) The quantity u is greater to the right of the discontinuity than it
is to the left.

4

rg r

Figure 16

If one of these conditions were disturbed, the entire phenomenon would be
more complex.

The discontinuity producing the expansion wave exists for only one in-
stant; all of the quantities will be continuous at any subsequent moment, for
example, at the moment t = t; (Figure 15). A graph of the velocity u will have,
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Figure 17

for example, the same form (Figure 17). The quantity u is continuous at the

. . . du . . .
points r; and ry, and its derivative ST undergoes a discontinuity. Discon-
tinuities of this type are called first-—order discontinuities. Thus, the outer
longitudinal characteristics of an expansion wave represent first—-order discon-

tinuities.

We indicated above the three conditions under which an expansion wave may
develop from the initial discontinuity. Are these conditions sufficient?

If there is a region near the expansion wave, within which the solu- /62
tion is given by formulas such as (8.2), then it must be stated that these con-
ditions are insufficient. Additional restrictions must be imposed on the dis-
continuity - namely, along one of its sides the entropy and the corresponding
Reimann invariants are constant.

However, if these latter conditions are not fulfilled, the motion after the
discontinuity will have the same nature from the qualitative viewpoint. The
longitudinal characteristics, not being rectilinear, will emanate from one
point just as before (Figure 18). The entropy and the Reimann invariant, not
being constant, will change very slightly close to the wave apex. The outer
longitudinal characteristics will be lines of first-order discontinuities,
et cetera.

The motion will have the same nature not only in the plane, but also in the
cylindrical and spherical cases. It is only important that the initial dis-
continuity satisfy the three conditions indicated above.

Therefore, from this point on we shall use the term expansion wave to
designate the region on the r, t- plane occupied by the characteristics emanat-
ing from the discontinuity point satisfying the three conditions formulated
above.

Within such a "generalized" expansion wave, u and ¢ will not satisfy the
relationships (8.2). Nevertheless, these formulas provide the main terms of
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Figure 18

the functions u(r, t) and c(r, t). 1In the general case, the function /63
u(r, t) within the expansion wave is expanded in series such as the following:

ul,)=f@+Ut—)LHE+E—tlHE+....

and the function f(&) coincides with the right part of the first formula
(8.2).

All of the remaining terms permit similar expansions.

The expansion wave apex is a particular point, since the quantities
u, ¢, o, P, et cetera, along different characteristics have different limiting
values at this point. Nevertheless, no particular difficulties are entailed

in calculating the expansion wave.

For example, let us calculate the expansion wave shown in Figure 18, The
region between the outer first-order discontinuities is filled with an in-
finite number of a-characteristics emanating from the wave apex. In performing
this computation, we must confine ourselves to a certain finite number of
characteristics. It is impossible to give a universal formula for selecting
this number. Experience must be the guide in each separate case, and sometimes
trial computations for a small region close to the apex must serve as a guide.
Let us assume that we have decided to "release'" five characteristics (including
the outer characteristic).
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The region located to the right of the expansion wave can be calculated

" in the customary way up to the outermost, right characteristic of the wave, in-
clusively. Let us take a piece of paper, divide it - as is customary - into
squares, and let us draw the points for the outermost, right o-characteristic
in the upper horizontal line (these points are designated by crosses in this
diagram). In the far left vertical column, skipping three squares, let us draw
the point corresponding to the left side of the initial discontinuity - i.e.,
the initial point of the outer, left wave characteristic (designated by X).
Then, in the three intermediate squares (designated by circles) let us draw

the points compiled in the following way:

AN NN N
O
° |
ol | 1]
=T —
The quantities t, r, R, v, B at these points coincide with and /64

equal the corresponding quantities at the points already drawn in the left
vertical columns (at which they must coincide with each other, according to the
conditions in the initial discontinuity). With respect to A, at these three
points the values lying between the upper (+) and the lower (X) points are
recorded, so that the values of A differ from each other by the same amount at
each of the two subsequent points in the left vertical column.

The remaining terms z, u, o, B, R', F) can be computed according to general
rules.

We now have two series of points, formally comprising the initial data for
the Goursat problem. Using general rules, we may compute all of the points
located in the four horizontal lines beginning with the points which are desig-
nated by circles and X. The expansion wave will be computed in this way.

The question already arises at the beginning of the calculation as to
whether the number of characteristics we have "released" from the wave apex is
sufficient. If the recalculation (or other indications) indicates that the
steps are excessively large, we must then repeat the initial division, increas-
ing the amount of intermediate points. If, on the other hand, the steps are
excessively small, it is recommended that the "discarding" of the points is not
done in haste, since the steps initially increase very rapidly along the trans-
verse characteristics in the expansion wave. It is recommended that the
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Figure 19

initial division be performed with a certain reserve, since, as a rule, /65
it is subsequently necessary to resort to "insertions" which are frequently re-
peated.

The outer characteristics of the expansion wave are first-order discon-
tinuities. 1In practice, this means that interpolation cannot be performed
through these lines; when selecting the points for interpolation, one must
ascertain that the mean point does not lie on the first-order discontinuity
line. Finally, interpolation is fully admissible along the first-order discon-
tinuity.

In view of this fact, it must be particularly noted that the first-order
discontinuities are not confused with the customary characteristics. For ex-
ample, they may be circled with a red pencil on the r, t-graph. It is also
recommended that the corresponding characteristics be designated on the pages

being used.

If the first-order discontinuity reaches the boundary described in Section
7, it is "reflected" from it by the first-order discontinuity (see Figure 19,
where the first-order discontinuity is designated by the double line).

We must also keep the fact in mind that with the passage of time the first-
order discontinuities have a tendency to weaken, so that the discontinuities
of the functions for them become less significant. Therefore, it is frequently
possible to disregard the "0ld" first-order discontinuity at the moment which is
advantageous for this, and to perform a small, additional "smoothing" of the
region adjacent to it.
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9, DISCONTINUITIES (GENERAL PROPERTIES) /66

The initial discontinuity of an expansion wave, which was investigated in
the preceding section, exists only for one instant. However, as is well known
from hydrodynamics, more stable discontinuities existing for a long period of
time may appear in an ideal, compressible liquid. The discontinuity point
(corresponding in space to the discontinuity surface, which is flat, cylindri-
cal, or spherical in our case) moving along the r, t-plane describes a line -
the discontinuity line. When passing through this line, the hydrodynamic
quantities (u, p, et cetera, but not r, t, R) perform jumps. The limiting
values of these quantities on both sides of the discontinuity fulfill definite
conditions which we shall now briefly derive.

Let AB be the discontinuity line. It divides the r, t-plane into two
parts, which we shall designate by the indices 1 and 2 (Figure 20). Let us
enclose an integral on this line by a closed shape having the form of a narrow
band; let the shape intersect the discontinuity line at the points C and D,

¢t

Figure 20

The integral laws of conservation (1.19) are valid for any closed shape,
independently of whether the integrands are continuous. In particular, we may
apply them to our shape. We shall decrease the width of our band, keeping the
points C and D statiomary; the shape joins the C segment of the discontinuity
line at the limit. Let us determine what the laws of conservation (1.19) pro-
vide us with at the limit.

First of all, we may discard the parts corresponding to integration /67
over an infinitely small "transverse'" contour interval containing the points
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C and D in the contour integrals on the left. Only two linear integrals re-
main - from point C to point D in region 1, and from point D to point C in re-
gion 2. In addition, since the band area vanishes, the integral over the sur-
face disappears in the right part of the law of conservation of momentum
[second equation (1.19)]. All three laws of conservation assume the following
form

D [
§f1dr—-g1dt+§fzdr——g2dt=0. (9.1)

The indices 1 and 2 indicate in what region (i.e., at which side of the discon-
tinuity line) the values of the integrands must be selected. Both integrals
are selected along the CD interval of the discontinuity line.

Relationship (9.1) can be rewritten as follows:

D

D
andf'~g1dt=§fadr——g,dt. (9.2)
C

d
Let the equation for the discontinuity line be Ef = D so that D is the velocity of

the discontinuity surface in space. Then equation (9.2) assumes the following
form

D D

{ (hD— gt = (f.D — go) at. (9.3)
(4 c

However, since the CD interval may be completely arbitrary, the following equa-
tion for the integrands follows from the equation for the integrals (9.3):

D — g1 = fsD — g,. (9.3")
This is the desired relationship on the discontinuity line. We must now only

substitute the specific expressions for the integrands from the laws of con-
servation (1.19) in (9.3"). instead of f and g. Thus, the factors rV are elimi-

nated, and we obtain three relationships:

1D — pytty = pyD — pyu,,
pudyD — (Pluf + p1) = petiyD — (qu: + pa),

u? ut
Pl(el+-§>D—u1[91(51+'?1>+l71]= (9.4)

- “3 ' 2
=f &+ D—%Pz%+7ﬁﬁh.
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which can be rewritten as: 6

pr(D—uy) —pa(D—uy) =0,

Pty (D — uy) — potts (D — ty) = py — py, (9.5)

3
h (51 + %) (D—uy) —p, (52 + —l;a) (D—us) =t py—tisps.

The discontinuities may be divided into two types which are different
qualitatively. The first type includes discontinuities through whose surface
there is no flux of matter; these discontinuities are called contact discon-
tinuities. It can be readily seen that this condition may be written in the
following form

D::u’

and we may use both uj and u; for u because the first equation (9.5) shows that
the conditions D = u; and D = us are equivalent. It thus follows directly that

Uy = Uy,

In addition, we obtain the following from D - u; = D - up = 0, according to the
second equation (9.5):

Pr= Pa.

The third law of conservation does not provide anything new.

Thus, the contact discontinuity may be characterized by the following re-
lationships:

D=u,
Ul = ng,

o P (9.6)

On the r, t-plane, the contact discontinuity line represents an ordinary tra-
jectory; the particle velocity u and the pressure p remain constant when passing
through this line. The density p and the entropy s undergo a discontinuity.
The surface of the contact discontinuity in space divides substances in differ-
ent thermodynamic states -~ for example, having a different temperature - into
two parts. In view of the fact that there is no thermoconductivity, this tem-
perature difference cannot be equalized.

Surfaces dividing different substances must pertain to contact discontin-
uities, 1In this case, it may be stated that the equation of state changes on
the r, t plane on the contact discontinuity line. The relationships (9.6)
always remain in force.
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We would like to point out the obvious fact that the contact discontinuity
line on the r, t plane is always timelike.

Discontinuities of the second type - those through which there is a /69
flux of matter - are called shock waves. Relationships (9.5) cannot be simpli-
fied for them, as was the case for contact discontinuities. However, we can
transform these relationships. We may exclude D - u; and D - up from them.

First of all, solving the first two equations with respect to D -~ u; and
D - u; we obtain

D—u1=.&.1'
Ay (a—uy)
D—uy= Pr=hr 9.7
Ps (4a—uy)
and, in addition
(D —t) = ps (D —uy) =2=P1
Us— 9.8)
Subtracting the second equation from the first (9.7), we have
us——‘u1=p’;pl(.i__i) R
Uz —uy \py Pa
or
M —w) = —(py—p)) (—‘———i) .
P2 P1
9.9)

Substituting the quantities p3j(D - u;) and py(D - uy) from (9.8) in the
third equation (9.5), we obtain the following (changing signs in both parts)

] 3
u,—ul

) = UzPy — ) Ps.

p"c-
s —t; (Ez—el'i‘

As may be readily seen, the right side may be written in the following form

(414 us) (02 — p3) + (o1 + po) (42 — 1))
2 .

Removing the brackets in the left side, we obtain

::Zl (e’_el)+_(gg+u-;(pz—px)_ =(u1+uz),(ps—_pn)-fz-__legl-_&)(u.—uo )
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or, after comtraction,

%_ﬁ=mjmj?ﬂm.
2 =P

The second factor in the right side is - L Ei according to (9.9). There-
fore, we have Py 1

er_ﬁ=__&§ﬂ(i_iﬁ, (9.10)
~ P2 P
It follows from (9.9) that 70
i Tl S Seud Y h—t
Uy —~ __.1 Plpa?a“?l )
P2 P

Substituting this in (9.7), we have

gy = P2 _
D= Pz —P1 4y — ). (9.11)

Let us introduce the following notation

where ¢ is the compression through the shock wave. Then (9.11) may be re-
written in the form

G

D——ul=°—1(u2““ul). (9.12)

Thus, on the basis of (9.9), (9.10) and (9.11) we can write the relation-
ships for the shock wave in the following form

D—uy = By (4 — uy),
Pa—p1
. 1t 1
(4 — ) = —(p. — py) (——'—').
2] 2
%_%2_&§ﬂth%,
Pz P

-

(9.13)

Up to this point, the indices 1 and 2 were applied to regions lying on
both sides of the shock wave, in a completely arbitrary manner. We shall now
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stipulate that the index 1 designates the region from which the flux of matter
is directed through the wave, and the index 2 designates the region to which
this flux is directed. The Lagrangian coordinate R along the shock wave front
must change. TIf it increases (with an increase in t), in the cylindrical and
spherical cases this will be a diverging wave; if R decreases, the wave will be
a converging wave. For purposes of uniformity, we shall use these terms (di-
verging and converging waves) in the flat case. For the diverging waves, the
region lying to the right of the discontinuity line (on the r, t plane) is
designated by the index 1, according to our definition; for the converging
waves, the index 1 designates the region to the left of the discontinuity.

Let us write the equation of state for matter in the following form

p=rp(p 3).

When an investigation of shock waves in matter is performed in hydrodynamics,
the following condition is usually imposed

i'_(i)>o,

dap*\p ) (9-14)

We shall also adhere to this stipulation. The equations of state which /71
we discussed above satisfy condition (9.14).

The following properties of shock waves are presented in courses on hydro-
dynamics under the condition of (9.14):

1. Shock waves are always compression waves, i.e., the following ine-
qualities are always valid

Pz > P1, P> pr-

(The so-called Cemplen theorem).

2. The following double inequality is fulfilled for diverging shock waves

d1>D>ag,
and for converging waves the following is fulfilled
B <D<B,.

3. For an ideal gas, and also for all the equations of state investigated

previously, the ratio %% is limited:

~P—2—<h=1+1

[ v—1'
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b2

P1

4, The quantity u is always smaller to the right of the wave front (on
the r, t plane) than it is to the left of the front (both for converging and
for diverging waves).

while the ratio may be as large as desired.

Together with equations (9.13), the first characteristic entails the fol-
lowing inequality for all our substances

€ >0y, 25 > 2y, Ug >0y
The entropy must increase on the shock wave front.

The second characteristic indicates the position of the shock wave front
line on the r, t-plane with respect to the grid of the characteristics. For
example, for a diverging wave this position will correspond to that shown in
Figure 21. As the front of the shock wave "catches up," it "truncates" the
a-characteristics of regionm 1. The a-characteristics of region 2 "catch up
with" the shock wave in their turn. Thus, the velocity of the shock wave front
will be supersonic for region 1, and subsonic for region 2. It may also be
stated that the line of the shock wave front for region 1 is spacelike, and for
region 2 it is timelike.

Let us turn once more to the relationships (9.13). The second equation /72
relates the square of the velocity change up; - u; with the pressures and densi-
ties at the shock wave. If we want to calculate u; - u; on the basis of this
equation (assuming that p;, py, p;, ¢, are given), when the square root is

Figure 21
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taken on the right side, it would be necessary to attribute a specific
sign to it. The fourth of the shock wave characteristics enumerated above in-

dicates that it would be necessary to choose a plus sign for diverging waves,
and a minus sign for converging waves.

The third relationship (9.13) is unusual, due to the fact that it contains
only thermodynamic quantities - pressure, density, and internal energy. It is
called the Hugoniot adiabatic equation. We should point out that, as shown in
hydrodynamics, there is no combination of thermodynamic quantities which could
remain unchanged when passing through the shock wave front.

72



10. CONTACT DISCONTINUITIES /73

In its broad outlines, the procedure to be followed in computing the con-
tact discontinuity is as follows. Let us assume that point 1 of the dis-
continuity (Figure 22) has already been computed - i.e., both its coordinates
and all the quantities on both sides of the discontinuity are known. Using
the usual procedure, we may calculate both characteristics emanating from point
1 - the o-characteristic 1 - 1' and the B-characteristic 1 - 1". Let us draw
the line %% = u) from point 1. It will approximately represent the contact dis-
continuity line. Let us select points 2 and 3 on the 1 - 1' and 1 - 1" char-
acteristics in such a way that the o-characteristic emanating from point 2, and
the B-characteristic emanating from point 3, intersect the discontinuity line
at one and the same point 4. This will be the desired subsequent point of the
contact discontinuity.

We must compute six quantities at point 4 - for example, the value of
v, A, B on both sides of the discontinuity. In order to do this, we must have
six equations. We have two equations from (9.6) -~ this is the condition for
the velocities u and the pressures p to be equal on both sides of the discon-
tinuity. In addition, the Lagrangian coordinate R, and consequently the entropy
s, are retained along the contact discontinuity line. The entropy has two dif-
ferent values (generally speaking) on both sides of the discontinuity; in par-
ticular, each of them is shifted from point 1 to point 4. This provides us with
two equations. Finally, we can obtain the last two equations from the relation-
ships for the 2 - 4 and 3 - 4 characteristics.

Specific variants of the computational formulas can be different. Let
us analyze the two main variants, the first of which is the simplest and has
universal application in a certain sense. Let us first present certain stipu-
lations,

Each point lying on the discontinuity line contains two "sets" of quan-
tities pertaining to two sides of the discontinuity. Therefore, it is advantag-
eous to assume that it has not one, but two points, whose coordinates t, r, R
coincide. In accordance with this, we shall change the notation in Figure 22,
and shall employ different notation, indicated in Figure 23. We shall 174
use the index 1 to designate the region located to the left of the discontinu-
ity; we shall use the index 2 to designate the region on the right. We shall
employ these indices to designate the constants ( x ,pg , cg, et cetera) per-
taining to these regions.

Let us assume that the coordinates of points 5 and 6 have been found. We
can now find v at these points from vg = v, vg = vp. Let us now determine
P and u at points 5 and 6. Since pg = pg, U5 = ug, we actually need to find
two, and not four, quantities. In order to do this, it is simplest to employ
the equations of characteristics in the form (2.3):
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P4 du—Fa.
Pc

As is customary, let us replace the differentials by the finite differences,
and we obtain the two equations

P 4 ) a0

EC_'——F" —-(u, —u4) = F;(lg— tq).
Pale

Solving them with respect to ps = pg and us = ug, we can compute the quantities
desired.

Figure 22

Points 3 and 4 are located on fixed characteristics; the coordinates of
points 5 and 6 coincide. The directions of segments 3 ~ 5 and 4 - 6 are also
fully determined. It follows from this that we have one degree of freedom at
our disposal when constructing a "figure" consisting of points 1, 2, 3, 4, 5,
6. Assigning one of the coordinates to ome of the points 3 - 6, we may deter-
mine the entire "figure". Which coordinate must be disposed of? /75

In the overwhelming majority of cases, it is most convenient to select
one of the points 3, 4. We may select one of the points already computed
corresponding to the characteristic, which saves us from unnecessary inter-
polation. As a rule, we should select the point which is closest to point
1 or point 2. In view of the special circumstances, only in individual cases
is it necessary for us, for example, to note the coordinates of points 5, 6.

For purposes of definition, we shall assume that we have selected
point 4. We can obtain the coordinates of points 5, 6 (in the first approxi-
mation) by finding the point at which the line dr = u; dt emanating from
point 1 (or 2) intersects the line dr = 8y dt emanating from point 4. We
must now determine point 3.

It is necessary to know the direction of the 3 - 5 characteristic in
order to do this. However, we still do not know o3, or az. We must take o
from any point which is close to point 3. This point may be readily found
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Figure 23

from the r, t graph, on which a grid showing the characteristics for the com-
puted portion of region 1 must be compiled at the time under comsideration.

By plotting points 5, 6 on this graph, we can determine where point 3 falls
with sufficient accuracy. It is assumed in the computational formulas presen-
ted below that point 1 is closest to point 3. This fact must be kept in mind
during the practical application of these formulas.

Drawing the lines dr = 8; dt through point 1 and dr = aj dt through point
5, and finding their point of intersection, we may determine the coordinates
of point 3. We may find all of the quantities which we need at point 3 by in-
terpolation along the B-characteristic emanating from point 1.

On the basis of the statements presented above, we may now compute points
5 and 6, after which we shall perform the recalculation. This is done in the
usual manner by replacing the coefficients of the differentials by the corres-
ponding mean coefficients in all the formulas.

By way of an example, let us present a variation of the specific computa-

tional formulas. It is assumed that both substances adjacent to the discon-
tinuity line are ideal gases. Let us introduce the following notation
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The substitutions which are made during the recalculation are shown in the form-
ulas on the right in parentheses.

The arithmetic means are designated by the
double indices - for example, ujzg =% (up + ug):

b= tg = p‘t‘—f‘l‘:tf—t,“_r" (4s — tzg, By—>Bio) 176
rg=ro=ry+Uy(lg—b)=r,+ By (ts —ts), (Ua—> g, By — Bus)
f = fh—aids+rs—n
=
fr—ay

B — B, ay— Oas)

Interpolation of

point 3:
3 3
po== At py = Dghets
%y xg
.i.."i ____i Y
g3 a% z;;‘ gd—“ a: z‘""
Fo= —y%%% g _ %
rs Tq ?
Ps = Po = gsPs+g4P4+“s—l{c+Fg(taj*_fs)+Fc_(io'—h)w'
&8s+ &
8s—> gss
Ug = Ug = s+ Fs (s — tg) — g3 (s — po) = ga—> Gus
= U4—F4 (ta—tﬂ)—'— &a (p8“p4)’ Fa‘—> F35
Fy—Fy (10.1)
- Us =0y, Ug=1,,

. 1
hi+1 het1
%y % s
25 = (-—’-pa) , Ze = ( at 2 )
a,

05 = Ug + UsZg, iy

= Ug — UgZs,
— UsUs2y UaUs2,
Fy—= —v 222 Fg = — y 22558
Ts Te
1 b 1 v
8= % s  Be=— e
i 6 P .
a %! azz:"

Similarly to v, R can be simply transposed along the discontinuity line,
so that the following relationships must be added to formulas (10.1):

Rs - R],’ Rs = Rz-
As a rule, R; = R» and R = Rg.

However, for purposes of control it is recom-
mended that R be integrated along the segments of the 3 - 5 and 4 - 6
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characteristics. This may be performed when the recalculation is finished,
substituting the mean values of R' [Equation (7.7)] in the integration formula.
We shall return to the problem of controlling R on contact discontinuities
when we discuss general integral control of the solution.

When calculating each point of the contact discontinuity, if we select
the calculated point closest to point 2 as point 4, then the grid for the
characteristics assumes a form which is approximately the same as that shown
in Figure 24. If we start with the selection of point 5, then the pic- /77
ture is relatively symmetrical. As we may see, the characteristics of one set
(B in Figure 24) "pass" through the discontinuity line and "are reflected" from
it. The characteristics of the other set are "truncated" at the discontinuity

Figure 24

line. This factor must be taken into account when a first-order discontinuity
approaches a contact discontinuity. If, as is shown in Figure 24, the line of
the first-order discontinuity (the double line in the figure) represents the
characteristic which is "passed" through the contact discontinuity and "re-
flected" from it, the first-order discontinuity introduces no additional diffi-
culties. In the opposite case, when the first-order discontinuity closely
approaches the contact discontinuity line, interpolation of point 3 (see Figure
23) is impossible. We must thus change the computational order, selecting the
first-order discontinuity point as point 3.

In spite of all the advantages of this method, it is not always advan-
tageous to employ it in practice. The quantity p frequently changes from point
to point so greatly, that direct integration of equations (2.3) entails a great
amount of error, as well as the necessity of decreasing the step close to the
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discontinuity. When the discontinuity points are computed, it is thus desir-
able to integrate equations (2.5) - i.e., to return to Reimann invariants.
It is true that the ratio ps = pg is replaced by a more complex one, but this
is partially offset by other advantages. We shall now briefly sketch the
second method for computing the contact discontinuity, without presenting the
final computational formulas. /78

It can be seen from Figure 23 that we may find A5 and Bg by performing
integration along the segments of the 3 - 5 and 4 - 6 characteristics. After

this process, since we may assume that vs and vg are known, we may employ
equations ps = pg and ug = ug to compute Bg and Ag. This may be done as fol-

lows:
Since ug = ug, from the formulas

Aﬁ = (hl— 1)05 + us,
By = (hy — 1) cg —us

it follows that
As+ By = (B, — 1) ¢5 + (Ba— 1) €. (10.2)
In addition, since ps = pg,

x ] 2
.El zh‘+l _ .El zh‘+l
% L] % ] ’

or, since z =

< |n

at at
1 chrh — 2 c:lri-l )
'uvshr'_l ¢ 7-2Ueh'+1 (10.3)

The quantities vs and vg may be assumed to be constant. If we now solve equa-
tions (10.2) and (10.3) with respect to cs and cg, we find that both c¢5 and
cg are functions of As + Bg. Consequently, after integration of A; and Bg, we
may immediately determine cs and cg, as well as

By =2(h— 1) — A,
Aez 2(h2‘—' l)cG_BB'

Here the difficulty is encountered in equation (10.3), which is nonlinear.
However, we may proceed as follows. For example, let us assume a certain se-
quence in the values of cg5. The corresponding sequence of the values for cg
may be readily computed from equation (10.3), and the sequence of As + Bg may
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be computed from (10.2). As a result we obtain a table containing three columns
for the quantities cg, cg and Ag + Bg. If we know A5 + Bg, we may find both

cg and cg from this table. TFor greater convenience, this table may be first
pre-interpolated, so that the values of Ag + Bg are equidistant.

Unfortunately, such a table cannot have universal application, since it
depends on vg and vg. Therefore, it must be compiled again for each section
of the contact discontinuity with the data of vg and vg. However, as a rule,
this additional work is worth the effort.

The introduction of Reimann invariants makes it possible to take one step
in simplifying the calculation - to exclude the interpolation of point 3 (or 4)
(Figure 23). Let us select points which have already been computed as 179
points 3 and 4. Then the coordinates of points 5 and 6 will not coincide. For
purposes of definition, let us assume that point 5 lies above point 6 (Figure
25). By finding the coordinates of these points we may compute As and Bg in
the usual way. By employing points 5, 1 and the "left" point calculated previ-
ously (lying above point 1) as interpolation points, we may interpolate the

Figure 25

"left" quantity A at point 5', whose coordinates coincide with the coordinates
of point 6. As indicated above, by knowing Ag and Bg we may compute point 6.

Point 5' is an auxiliary point, and it may be computed with no difficulty, as a
rule.
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The recalculation entails certain difficulties - namely, the recalcula-
tion of As. Except for A, at point 5 nothing is unknown to us, and in order
to recalculate A it is necessary to know o, F and z. The following procedure
may be assumed. After the first approximation of point 6 is performed, we may
extrapolate u at point 5, on the basis of points 6, 2 and the point previously
computed. Knowing Ag and ug, we may readily calculate oy, F5, z5; we may then
recalculate As. With A5 defined more accurately, we may recalculate point 6.

The calculation of point 5 will be as follows. At this time we already
know ts, rs5, As, us, as, F5, Zs5, which have been computed in the customary
way by extrapolation of u. However, nothing prevents us from taking them
for the first approximation. It only remains to recalculate point 5. In /80
order to do this, it is necessary to know Bg (see Figure 25), which we may find
by integration along the 7-8 segment. Let us then extrapolate u at point 8,
let us determine Bg more accurately, let us interopolate it at point 8' and
finally let us recalculate point 5.

The rest of the computational procedure is now clear. As we may see, the
"process" for this computation differs considerably from the "Euler method with
recalculation,” but the over-all order of accuracy remains as before. The

N\
/]

Figure 26

network of characteristics will have the form shown in Figure 26, so that the
characteristics of both sets are "reflected" from the discontinuity line. When
necessary, nothing prevents us from ''passing” a certain characteristic along
the discontinuity, since after this all of the quantities at point 5' may be
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readily computed, since point 6 (Figure 25) has been calculated. After this,
it is possible to "release" the next B-characteristic from point 5'. Such a
procedure may be necessary, for example, when a characteristic supporting a
first-order discontinuity (the double line in Figure 26) reaches the line of
the contact discontinuity.

Both methods presented for computing the contact discontinuity have their
advantages and disadvantages. The first method entails the necessity of inter-
polation along the characteristics, but it has great logical simplicity and
computational uniformity at each step. Therefore, it is more suitable for
computations on computers. The second method is preferable for computations
"by hand," since it is more economical and flexible.
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11. SHOCK WAVES /81

Figure 21 illustrates the position of the line of the shock wave front
with respect to the characteristics. In contrast to the contact discontinui-
ty, there is no symmetry between the regions lying on both sides of the dis-
continuity. If it is reasonable to speak of the "right" and "left" regions
in the case of the contact discontinuity, then we shall employ a different
terminology for the shock wave. We shall call region 1 the lower region, and
region 2 the upper region. Correspondingly, at each point on the shock wave
front we may speak of lower and upper values for each quantity.

For the lower region, the line of the shock wave front is a spacelike
line. Therefore, nothing prevents us from solving equations (2.1) continu-
ously in the "upper" region, ignoring the discontinuity. 1In physical terms,
this "upper'" region is purely fictitious; it reflects the motion of a sub-
stance which would exist if there were no shock waves. Naturally, every effort
must be made to see that this "excessive" computation is reduced to a minimum.
However, during a numerical computation such a continuation of the lower region
beyond the 'prescribed" boundaries must always be performed. From this point
on, we shall always assume that this continuation of the lower region has al-
ready been effected, and our problem consists of "truncating" the portion of
the characteristics field which was computed previously, in order to "pass"
the shock wave along this "prepared” region.

Let us assume that point 1 of the shock wave front (Figure 27) has already
been computed - i.e., both the lower and upper values of all the quantities are
known at this point. We may employ the first formula (9.13) to calculate the
velocity D of the wave front at the point 1. The line dr = D; dt drawn through
point 1 approximately expresses the discontinuity line. On this line, let us
select a certain point 2 which we shall intend as the next point of the wave

front.

The characteristic 1 - 1' emanates from point 1 upward (since the discon-
tinuity line is timelike for the upper region, and only one characteristic may
emanate upward). We may assume that this characteristic is already known.

Let us select point 3 upon it, in such a way that the characteristic of another
set (with respect to 1 — 1') from point 3 falls exactly at point 2. /82

Since the line 1 - 2 passes by definition along the lower region which has
already been computed, we may find the lower quantities at point 2 directly.
We already know the coordinates of point 2. We must now compute any three
quantities — for example, u, p, p — at point 2. We must have three equations
in order to do this. Two equations provide us with relationship (9.13)[the
second and third . We should point out that the index 1 in these equations
does not designate the quantities at point 1 (Figure 27), but the lower values
at point 2]. The third equation provides us with the relationship along the
3 - 2 characteristic, rewritten with finite differences. 1In solving this
system, we may compute point 2 entirely.

Thus, the calculation of the shock wave front point may be divided into
the following four steps:

82



Figure 27

(1) Calculation of the coordinates of the new point;
(2) Determination of the lower quantities at this point;

(3) Drawing of the "overtaking" characteristic (3 - 2 charac-
teristic in Figure 27);

(4) Solution of the system of equations at the wave front.

There is a close correlation between points 1, 2, and 3; point 4 is inde-
pendent to a significant extent. Therefore, we shall first examine the first
three steps in the calculation, postponing the last step until later.

Point 2 entails the primary difficulty, since we must deal here with
the interpolation of functions of two variables. We know the values of all
quantities in the lower region at the points in the characteristics network,
and if we select point 2 (Figure 27) arbitrarily, it will fall within the
"parallelograms of the characteristics." 1iInterpolation (quadratic!) of the
functions of two variables is a very cumbersome problem, and our goal is to re-
duce it to interpolation over one variable, i.e., to interpolation along a
a certain line.

One possible solution becomes immediately apparent., We must select point
2 in such a way that it lies on one of the characteristics in the lower region
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(see Figure 28, where these characteristics are designated by a dashed /83
line). The computational procedure may be as follows (for purposes of defini-

tion, a diverging wave is examined):

1. Let us draw the line dr = D; dt from point 1, and let us draw the line
dr = B; dt from point 4 in the lower region. Let us determine the point at which
they intersect, which will be point 2.

2. Performing interpolation along the "lower" 4 - 5 characteristic, we
may find the lower quantities at point 2.

3. Let us draw the line dr = B; dt from point 1, and the line dr = a; dt
from point 2. The point at which they intersect will be point 3.

4. Performing interpolation along the 1 - 1' characteristic, we may find
all of the quantities at point 3,

5. Let us solve the system of equations, let us compute all of the upper
quantities at point 2, and let us perform a recalculation.

We have assumed that point 1 is closest to point 3 on the 1 - 1' char-
acteristic. If we find a closer point, it would be advantageous to select it

+ . .
instead of point 1, in step 3. The quantity Ez—i—gi is selected during the re-

calculation, instead of aj (the reader may compare this step with the determina-
tion of point 3 in the calculation of the contact discontinuity; see Figure 22
and the text pertaining to it).

Almost all of the statements presented in Section 10 regarding the first
method for calculating the contact discontinuity may be repeated with respect
to this method. It is quite simple logically, but entails the necessity of
"inserting" point 3. Therefore, we shall investigate another method, where this
"insertion" is not requisite.

Let us assume that point 1 of the shock wave (Figure 29) has been computed.
On the characteristic emanating from this point, let us select point 3 which
has also been computed. Let us draw the line dr = Dj dt from point 1, and the
line dr = a3 dt from point 3. Let these lines intersect at point 2. In addi-
tion, let us have the line dr = D; dt intersect with the "lower" characteristic
passing ahead of point 2. We may obtain the auxiliary point 4, at which we may
find the lower quantities by interpolation along the characteristics.

Taking point 4, and also the auxiliary points 5 and 6 which have already
been computed, we may interpolate the lower quantities at point 2 over them.
After this, we may solve the system of equations and may compute point 2.

During the recalculation, it must be verified that the auxiliary point is
"placed" as accurately as possible on the line of the shock wave front. In or-
der to do this, we must first extrapolate D at point 4 along points 1 and 2 and,

84



when the coordinates of point 4 are determined more accurately, we must draw
the line dr ='% (D1 + Dy) dt from point 1. The rest of the recalculation

process is quite clear, and requires no additional clarification.

The presence of first-order discontinuities entails no additional /84
difficulties. 1If a first-order discontinuity is contained in the "lower"
data, then when it approaches the line of the wave front, the first method
must be employed, taking the next wave point on the characteristic supporting
the first-order discontinuity. If the first—order discontinuity "overtakes"
the shock wave in the upper region, we shall employ the second method, taking
the point of the first-order discontinuity as point 3. In both cases, the
characteristic supporting the first-order discontinuity passes upward from the
new point 2 of the shock wave.

Figure 29
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Let us now turn to the problem of solving the system of equations on the
shock wave front; let us only analyze the case of an ideal gas. Two methods
may also be proposed here.

As is known, the internal energy e of an ideal gas is expressed by its

density p and pressure p in the following way

e— L P (11.1)
*r—1 p

Substituting this expression in the third equation (9.13), we obtain the
adiabatic equation of Hugoniot in a form which is given in each course on
hydrodynamics:

P2 __ hoat-py

n mAthp (11.2)

In passing, we might mention that it follows from this equation that the ratio

g%_ across the shock wave cannot be greater than h. In actuality, for a constant
pi1 and increasing pp the right part of formula (11.2) increases monotonically,

and strives to h.

Let us now express p and p in (11.2) by z and v, according to /85
(5.11). We obtain

(ﬁ)”“(ﬂ)?_ haft1 4 gkt
2T 4

2, Uy

. z
or, assuming that T = 70

h
(‘2‘)2 = qh-1 vHth (11.3)

v [ La I

In the right part of the second equation, let us remove-g% from the paren-

theses:

Instead of %EJ let us substitute its expression from (11.2), and let us note
1
Po h+1 P

that = = 1
P ’

=.% cf. Then, after several elementary computations, we

—

I

°

1
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obtain

h—1 o (zhtr—1)?
(Up— ) = —— €

(11.4)

Finally, substituting P2 from (11.2) and uy - u; from (11.4), in the
1

1
first relationship (9.13), we obtain

2
cl

h+1

t

(D—w)? = (Arhtr - 1). (11.5)

Let us collect the transformed equations (11.3), (11.4) and (11.5) to-
gether:

h—1 o (z"T1 — 12

2
(u‘Z—'ul) - Cy h1h+l—{—1 3
vs \2 chot Htr ) .
(vl ) = hehtto 1’ (11.6)

2

c
(D . “1)2 = h+l1 (}11""“ I- ]).

When extracting the square root in the first and third equations, we must allow
for the shock wave direction -~ for diverging waves we must select the plus sign
(up > u;, D > uy); for converging waves we must select the minus sign

(up < up, D < up).

Let us write the equation along the characteristic in the form (2.3):
90 du = Fdt.
pe

Instead of p, p and c, replacing these expressions by v and z, we readily /86
obtain

(h — Vv dz +du = Fdt. (11.7)

Due to the fact that it is written in finite differences, this relationship pro-
vides us with the equation between z and u at point 2 (Figure 27). Therefore,
it can be solved concurrently with the first equation (11.6). This may be done
as follows. Let us define a.certain initial value of z3, and let us calculate
u, from (11.6) on the one hand, and from (11.7) on the other hand. Let us com-
pare the results obtained and, changing zp,we find that they coincide. We may
employ linear interpolation here; after two "tests" are performed, the third
value of zp is determined by interpolation over the first two, so that the dif-
ference between the two values of u; vanishes. As a rule, the number of
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"tests" is not great, since the initial value of z; may be taken from the pre-
ceding wave point with sufficient accuracy - or, which is even better, it may
be extrapolated to point 2. After up and z, are computed, we may find vy

from the second equation (11.6), after which point 2 "is calculated" in the

normal manner.

The second method for solving the equations on the wave front employs
Reimann invariants. In a certain sense, it is more comprehensive, but neces-
sitates additional tables.

2,

Let us multlply both parts of the second equation (11.6) by T Assuming
that x = thtl we may write
/%)szx_*_h,
kc; hx +14
or
Cs— 0y — V“- Vxi+h 1
& Yirr (11.8)
We may rewrite the first equation (11.6) in the following form
“‘“'__ h—1 x—1 (11.9)
Vhet1

The upver sign is selected for a diverging wave, and the lower sign is selected
for a converging wave. Multiplying (11.8) by h - 1 and combining it with (11.9),

we have

A — A - I/x+h R—1 x—1
ks S G S —
a ( )(V Vir+1 ) * Vhx+1-
(11.10)
In a similar way, we have
BZ—B.:(h_l)('/;_l/_grﬂ;“l)qzl/h—a x—1
o, ‘ Vhx 1 * Vhx+1 (11.11)
We can write the second and third equations (11.6) in the following /87

form
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- =X £ y

U Vhx 1

D—uw _ +th_|.1 (11.12)
P 7

Let us introduce the notation

{A for a diverging wave,

X_
B for a converging wave;
B for a diverging wave,
v o ,
A for a converging wave.

Thus, X is the Reimann invariant, which is integrated over the "overtaking"
wave of the characteristic; Y is the other Reimann invariant. Relationships
(11.10), (11.11), (11.12) now assume the following form

Xs— X —h—1) (VI VxLh _l) +Vh_-—7 x—1

o Vixtt * Vhed-1’
Y,—Y, - vx+h F—1 x—1
e Vs o h—1 (V ] —1)_ h—1 x—-1
N ( ) xth+1 * VhxH1
ﬁ_~_2%}/x4—h (11.13)
0y Vx4t
D—w _ Vhxt1
+ a  Vhrt

Since the quantities on the left depend only on x, they are all function-
ally interrelated. Therefore, we may compile a table in the following form:
Yg—yl -U‘.z_

51

X — X,

D —uy
(%] +

51

Uy

The equations may now be solved in the following way. After the lower
quantities (appearing in the table under the index 1) are determined at point
2, we may assign a certain value to vp. This enables us to integrate the
Reimann invariants over the "overtaking' characteristic, i.e., to determine
X2. We thus obtain an "entry" in the table, from which we may find a new
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value of vp. We may employ it to find the new value of X;, and the new /88
value of vy from the table, et cetera. As a rule, this process is one which
converges rapidly, and we finally obtain the values for X, and vy. From the same
table we may now find Y, and D, after which we may assume that point 2 has been
computed.

We should point out that the left sides of relationships (11.13) contain

the same parameter — the adiabatic index x (because h = ?}%}%% + Therefore,

this table is suitable for all ideal gases with the given adiabatic index -
i.e., it has quite universal application.

Let us turn briefly to substances with an equation of state such as (5.15).
The expression for the internal energy in this case may be written as

2
S (11.14)
(x—1)p

It follows from equation (5.15) that the internal energy is related to pressure,
density, and entropy by the equation
P+ Pocz

= NIy
ST T

where f(k) is an arbitrary function of entropy. However, in all cases which
are justified in physical terms, we may assume f(k) = const. Because the in-
ternal energy is determined within the accuracy of an additive constant, we may
employ formula (11.14)]. 1If we now perform all the corresponding computations,
it may be readily confirmed that equation (11.6) remains in force (we should
recall that z and v are now determined by formulas (5.19) and (5.21). The re-
lationships (11.13) remain unchanged, and consequently the table described
above, which may be employed both for substances such as an ideal gas and for
substances such as (5.15) (it is only important that the adiabatic indices

x coincide for them). Thus, the computation of shock waves for equations of
state such as (5.15) barely differs from their computation for ideal gases.

In certain cases, the state of motion of a medium "umnperturbed" by a shock
wave (i.e., motion in the lower region) may be given, not by the grid of the
characteristics, but rather analytically, in the form of formulas, The most
important case here is the calculation of a shock wave propagated in a sub-
stance at rest, i.e., the case when the lower quantities have the wvalues

=0, p=const, p=const,

The difficulty entailed in the interpolation of the lower data is then
eliminated, and the entire computation is simplified accordingly. The second
computational method may always be employed here. Strictly speaking, in /89
this case the shock wave may be regarded as an unusual boundary condition. In
principle, the computational procedure is the same as that described in section
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7. The only difference consists of the fact that gz‘# u along the boundary,
and therefore R and v are not constant on the boundary. The method for comput-
ing these waves is quite clear, and we shall not dwell on it in detail. We
would only like to point out one special case.

Let us assume that we are dealing with an ideal gas, and that its initial
state (before the passage of the shock wave) is characterized by the following
values of velocity, density, and pressure:

Uy == 0, p, = py = const, p, =0. (11.15)

It may be stated in formal terms that condition (11.15) corresponds to an
absolute zero temperature. In practical terms, an investigation of this state
is valid if the shock wave passing through the gas is so strong that the pres-
sure before its front p; may be disregarded. Equations (11.6) are now unsuit-
able, because the parameter T becomes infinite, and we must derive the relation-
ships between A, B, v, et cetera, directly from formulas (9.13) again. For
purposes of simplification, we shall omit the index 2 for the upper quantities.

It follows from the Hugoniot adiabatic equation (11.2), which remains in
force, that

p = hpq; (11.16)

and thus, the density at the shock wave front is constant. In addition, the
second equation (9.13) yields

1 1 h—1
= — (———): ,
P hpo  eo hpo P

or

h 12
Bl (11.17)

From (11.16) and (11.17), we now have

A=t =T 2
P h—1

or, after extracting the square root, we have

= - *_u. 11.18
C_i‘/h—lu ( )

The plus sign before the root corresponds to a diverging wave, and the minus
sign corresponds to a converging wave. In addition, we have

A=(h__l)c+u=_*__]/h—:i(h——l)zt—l—zt:(lth—i—l)u, (11.19)
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and, similarly ' 90

B=(—1xVhi+T)u. (11.20)

Introducing, just as before, the quantities X and Y, we obtain

X=+Wh+1+ Yy,

(11.21)
Y=4W¥h+1—1u
or, finally,
_Vi+1—1
T Vhri41 (11.22)
In addition, from (11.16) and (11.17) we have
vzz:kz_”_.__h’_ipom: u ,
¢ ke (h—1) (hpo)™ ™"
or
U= tul =t
Vh—1(hpo) ?
On the basis of (11.21), we obtain
U* = lX' 1"
Ve—1(Vh+1-+1)(heo)
i.e.,
L
. LXT*
1 1 ‘
Wh—1T (Vi1 + 1)1 ()t (11.23)

Finally, the first relationship (9.13) yields




or, according to (11.21), we have

h
D= - —T__——X.
t (h—D(Vh+1+1) (11.24)
Thus, we have reduced the expressions for the shock wave front to /91

the form of (11,22), (11.23), (11.24):

L
IXPF
v= ' L 1
WE=1 (VT4 1) (he™H
N 11.
y o VEFi—t (11.25)
VEE14+1
h
D= L X.
e HWE T D )

These formulas replace relationships (11.13). Since the second and third
formulas show that Y and D are simply proportional to X, it is not necessary to
tabulate Y and D (as functions of X). With respect to the first formula, the
table is useful here, due to the presence of a fractional power for |X|. It
is true that the function v = v ( XI) depends on pg, just as on the parameter,
and therefore cannot have universal application. Therefore, we may confine

1/x
ourselves to the table for determining |[X| .

Up to this point we have not mentioned the computation of R for the shock
wave, The reasons for this are clearly apparent - this quantity does not change
on the discontinuity line, but is directly transposed from the lower region. In
particular, when a shock wave passes through a medium at rest with the initial
density p = pg, this quantity pg must be introduced in the integration formula
of the Lagrangian coordinate (1.17). Then R = r will hold on the line of the
shock wave front (since this equality holds in the lower region). We shall
discuss control integration of R along the wave front line at a later point.

The quantity v changes across the shock wave. Thus, the shock wave produces
a new functional dependence v=v(R), which may be employed when computing the
upper region. A table of the function v(R) may be compiled almost simul-
taneously with the computation of the shock wave. A new line is added to this
table with the calculation of each succeeding point of the wave.

The method presented in this section is only applicable to fairly strong
shock waves. Several difficulties are encountered when applying it to the case
of weak waves. This will be discussed in Section 13, where a practical method
for computing weak shock waves will be presented.

93



12, DECAY OF AN ARBITRARY DISCONTINUITY /92

Let us assume that the initial data for the problem contain a discon-
tinuity. If this discontinuity belongs to one of the three types described
above (initial discontinuity of an expansion wave, contact discontinuity, shock
wave), the subsequent motion may be computed on the basis of the rules pre-
sented in the preceeding sections. However, there may be a discontinuity for
which the quantities on both sides do not satisfy even one of the three types
of relationships presented above (a so-called arbitrary discontinuity). It
is known from hydrodynamics that such a discontinuity rapidly decays into three
(generally speaking) discontinuities, each of which belongs to one of the types
described above. In other words, an arbitrary discontinuity may always be
separated (by one single method) into the sum of three discontinuities, each
of which is either the initial discontinuity of the expansion wave, a contact
discontinuity, or a shock wave. 1In accordance with this, three discontinuity

CD ch
SW SW
S E
7 /4
cD CD
SW
EW
%y//// EW
— o )7
Figure 30
lines (if, for purposes of generality, we also call the region of the /93

expansion wave the '"discontinuity line") will emanate from the point of the ar-
bitrary discontinuity on the r, t-plane.

Thus, four main types of an arbitrary discontinuity decay are possible,
which are shown in Figure 30. The following notation is used here: The hori-
zontal line - initial dataj; CD - contact discontinuity; EW - expansion wave;

SW - shock wave. There may be cases in which one of the three discontinuities

drops out (its amplitude vanishes). If the initial discontinuity satisfies the
conditions of one of the three main ones (CD, EW, or SW), then the "decay" may

be reduced to one discontinuity.

94



Figure 31

CD

Figure 32

A type I discontinuity arises, for example,when diverging and converging
shock waves come in contact (Figure 31, the dashed line designates the line
which may be assumed as the line of initial data for the subsequent stage of the
problem). We should point out that if two initial shock waves have identically
the same amplitudes at the moment when they come in contact (i.e., if, for
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example, the upper values of p coincide for them), then there is no contact dis-
continuity after the decay.

If the shock wave reaches the contact discontinuity, the subsequent motion
belongs to one of the first three types (Figure 30). Figure 32 presents an ex-
ample. It is rather difficult to formulate the conditions which are sufficient
and requisite for effectuating a certain possibility in the general case*. /94
It may be stated that the case shown in Figure 31 (i.e., the case when a "re-
flected" expansion wave is formed) occurs, as a rule, when the shock wave
changes from a denser substance (or a more "rigid") to a less dense substance
(or less "rigid"). 1In the opposite case, a reflected shock wave is formed
(Figure 30, I). The situation is the same, if one shock wave overtakes another.
Case IV (Figure 30) only represents an exception when encountered in practice.

The computation of the discontinuity decay may be divided into three
stages:

(1) Determination of the gqualitative nature of the discontinuity (i.e.,
whether it belongs to one of the types indicated in Figure 30);

(2) Calculation of the initial values for all three discontinuities;

(3) Computation of the region directly adjacent to the point of the dis-
continuity decay.

With respect to the first point, it must be noted that the result of the
discontinuity decay may be frequently predicted directly, without any additional
calculations. This pertains to the "indisputable" cases which are similar to
the meeting of two shock waves, which was mentioned above. Case I is also
realized when two layers of a substance collide with each other. If at any mo-
ment of time two masses of substance, which are stationary with respect to each
other and which are under different pressures (for example, if the thin mem-
brane separating them is suddenly removed) come in contact, then a type II or
I1I discontinuity decay occurs as a function of the location where there was
greater pressure. On the basis of a certain amount of experience, it is pos-
sible to predict the result produced when a shock wave passes through a contact
discontinuity, especially if the densities of the substance differ greatly on
both sides of the contact discontinuity.

Nevertheless, cases are encountered when it is difficult to predict the na-
ture of the discontinuity decay beforehand. Therefore, we shall describe more

precise methods.

One of these methods, which was presented in the book by Courant and
Friedrichs, is as follows.

* See Courant and Friedrichs. Supersonic Flow and Shock Waves. Chpt. III,
Moscow, 1950.
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Let us first examine the region lying to the right of the contact discon-
tinuity which is produced after the decay. Either a diverging shock wave may
appear here, or a 'diverging" expansion wave, i.e., an expansion wave through
which (at the initial moment) the quantity B remains unchanged. If we write

the relationship for the shock wave in the form of (11.4), replacing Th+1 by

P2

—szsafter simple transformations we obtain
gz h—1 p: —p)?
(ug -~ y)* = . .
[ (hps + p1)
or, after extracting the square root (we should recall that the wave /95
under consideration is a diverging wave), we have
llz‘*ul{—'l/h—i . _&L' (12.1)

Vhps +py

We have the following through the expansion wave (retaining the previous
notation for regions 1 and 2)

Bz = Bl’ Up = 0.

Taking into account the relationships

=(h—1)c—u,
€ =uy2,
1
z=Vx p*H,
we can write "

(h— l)V;vl'sz_ Up=(h—1)e; —uy,

or

1

Uy =ty + (h—1) (V% 0,p," _o¢,). (12.2)

It must be assumed that the quantities with the index 1 are known -
these will be the "right" quantities at the discontinuity point.

Since p2 > p; in the case of the shock wave, p» < p; in the case of the
expansion wave, formulas (12.1) and (12.2) determine the functional dependence
= ¢(py) for different values of the argument p,. We may compile a curve of
up, p2 (Figure 33) which combines both these formulas.

Point 1 corresponds to values of u;, p;, which are general for both cases.
The upper portion of the curve corresponds to formula (12.1), and the lower por-
tion corresponds to (12.2). The curve as a whole comprises a collection of all
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the possible states which may arise from state I after the passage of the shock
wave or the expansion wave.

The situation is absolutely the same for the region to the left of the

contact discontinuity for the converging shock wave, and the expansion wave,
through which A, = A;. Instead of formulas (12.1) and (12.2), we now obtain

Uy o 1ty — h—1 _ p—p

Vhps+py
. (12.3)
Uy =ty (-~ 1) (V= 0,0, —cy)
Just as previously, the indices 1 and 2 designate the lower and upper /96

quantities, but to the left of the contact discontinuity this time. We may com-
pile a curve according to formulas (12.3) (Figure 34).

The quantities p and u are continuous .at the contact discontinuity. This
means that if we plot both curves (Figure 33 and 34) on a general graph (Fig-
ure 35), the point at which they intersect provides us with the values of
uy, pp at the contact discontinuity. In this way, the nature of the discon-
tinuity decay may be completely determined. If the curves are arranged as is
shown in Figure 35, a type I discontinuity decay occurs, because the pressure

2
H
7
Figure 33
V4
7
7
Figure 34

98



» * right

° left
2
1% )
7]
[}
Figure 35

P on the contact discontinuity is greater than both initial values. When the
curves are arranged as is shown in Figure 36, a type III occurs, since p on the
contact discontinuity is less than the initial p to the right, but greater than
the initial p to the left.

Although this method has no drawbacks theoretically, it is rather cumber-
some. The curves p(u) depend on the initial values on both sides of the ini-
tial discontinuity, and they must be calculated and compiled anew in each
specific case. Therefore, the method presented is more suitable for theoreti-
cal discussions as an instrument of proof, and is not a practical, work- /97
ing method for investigating a specific discontinuity. For this purpose, a
trial calculation of the discontinuity is much more suitable. Since this method
is very closely related to the method for computing the discontinuity in gen-
eral, we shall now turn to this problem.

Let us assume that we are dealing with one of four types of discontinuity
decay; this choice may be hypothetical. The vicinity of the discontinuity is

P

* right
° left

Figure 36
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CD

Figure 37

divided into four regions, which are designated by the indices 1, 2, 3, 4 in
Figure 37. For purposes of simplicity and generality, we shall express the
"lateral" discontinuities by one line, although they may be expansion waves.
In the latter case, we may still exclude the region of the expansion wave from

the investigation.

We know the quantities in regions 1 and 2. We must compute the quantities
in regions 3 and 4 (we are speaking of the limiting values of these quantities
at the discontinuity point, and not of the functions of r and t in these re-
gions). There are six of these quantities which we are seeking - for example,
u3z, P3, P3s U4, Py, Pu. It is necessary to have six equations in order to
determine them. The relationships for all three "outgoing'" discontinuity
lines - two relationships on each line - represent these equations. Thus, the
problem may be reduced to solving a system of six equations with six unknowns.

If we are dealing with equations of state of the ideal gas type, we may
immediately reduce the problem to solving one single equation. In order to do
this, we must employ the relationships (12.1), (12.2) and (12.3) which we ob-~
tained above. Let us write them again, changing the indices in accordance with
Figure 36 and omitting the indices for the quantities p3 = py and uz = uy:
the right shock wave /98
h—1 pP—P

P Vip+ p, '

u=u2+
(12.4)

the right expansion wave
1

=ty + (h — 1) (Y 500" — 3);
(12.5)

the left shock wave
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h—1 pP—P .
“““‘“‘/ n VipEp (12.6)

the left expansion wave
o
u=u—(h—1)Vx op""* —cy). 12.7)

We must keep the fact in mind that x and h may be different to the right and to
the left of the contact discontinuity.

In accordance with the type of discontinuity decay which was selected,
we must now select the appropriate pair from formulas (12.4) - (12.7) and equate
the right parts. We obtain one equation with respect to p. Solving it ac-
cording to the general rules for the numerical solution of equations (for ex-
ample, by the method of inverse linear interpolation), we may determine p at
the contact discontinuity.

We must now determine whether the result obtained corresponds to the type
of discontinuity decay with which we started. The following inequalities must
be fulfilled for the four types shown in Figure 30:

Lp>pup>ps W pi>p>ps
HL p,<<p<pe; W. 0<p, p<ps

If the value we obtain for p does not satisfy the corresponding inequality,
this wmeans that our initial hypothesis regarding the type of discontinuity de-
cay has been refuted. We must repeat the calculation, selecting a new type
corresponding to those inequalities which were satisfied by the value of p ob-
tained the first time. In the overwhelming majority of cases, the second
result is valid. We may now find u on the contact discontinuity from the
appropriate formulas (12.4) - (12.7) (it is almost always calculated during
the process of solving the equation for p). We may then find the values of

vy and vy. They are simply transferred from regions 1 or 2 through the ex-
pansion wave, and formula (11.3) may be employed for the case of the shock
wave. We can find z3 and z, and the remaining quantities on both sides of the
contact discontinuity.

This is the manner in which the discontinuity decay is calculated for ideal
gases. The situation is not much more complex for the equation of state such
as (5.15). The relationship for the shock wave may be reduced to the following
form

A4t L
v V % thps t p0) + (B + V) pc (12.8)

PoZ,

G .
Uy =uy A 22 l'
8
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and it may be reduced to the following through the expansion wave /99

b

Uy =ty (— 1) [v,( o p ) ~c,]. (12.9)

2
oo

In formulas (12.8) and (12.9) the signs are selected, depending on which side
of the contact discontinuity the shock wave or the expansion wave are located:
the plus sign is selected for the right side, and the minus sign is selected
for the left side, The index 2 designates u and p on the contact discontinuity,
and the index 1 indicates the corresponding (right or left) lower quantities.
The rest of the calculation proceeds in the manner described above.

For an equation of state such as (5.22), the discontinuity decay is complicated
by the fact that the Riemann invariant g%-i u is not expressed in the form of

the elementary functions of u and c¢ (see Section 5). Therefore, the system of
equations determining the discontinuity decay include the following equation
in the case of an expansion wave, at least on one side of the contact discon-
tinuity:

Here, the upper limit p2 1is unknown, and the integral is found by numerical
methods (see Section 5). The remaining equations of the system may be written
with no difficulty similarly to the equation of state for an ideal gas.

The problem of the discontinuity decay, which we are now investigating, is
closely related to the problem of reflection of shock waves from the boundaries
investigated in Section 7. A reflected wave arises after the shock wave has
reached such a boundary. Depending on the boundary conditioms, it may be both
a shock wave (Figure 38) and an expansion wave (Figure 39). Let us briefly dis-
cuss the two types of boundary conditions described in Section 7.

If a condition such as u = u(t) is given on the boundary, where the func-
tion u(t) is continuocus, then the situation shown in Figure 38 occurs, i.e.,
the reflected wave will be a shock wave. In actuality, since u on the boundary
was given beforehand, we have uj; = uj (Figure 38). 1In addition, we will have
up » u; on the shock wave "approaching" the boundary; therefore, u, > uj3, and
this latter inequality is characteristic, as we know, for a shock wave.

Formulas (11.6) may be employed to compute the initial point of the re-
flected wave (the indices 1 and 2 are replaced by the indices 2 and 3, according
to Figure 37). We know the left part of the first formula, and we can deter-

. h+l . . . .
mine T (in order to do this, we must solve a quadratic equation), as well as
z3. The second formula gives us v3, and we may assume that the desired point
has been computed.

In the second case, the pressure is given on the boundary in the /100
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form of the continuous function p(t). In this case, p3 = p1, and it may be
readily ascertained that the reflected wave is an expansion wave. Since

p2 > p1, then p3 < ps. Thus, the case shown in Figure 35 has been realized.

In order to compute the expansion wave which is produced, it is sufficient to
determine the jump in A, i.e., the value of A3. The following procedure may be
followed. Knowing pj, we may immediately obtain z3, and since v, = vg3,

cy= v3z3. However, we now have By = By, and we may thus find Aj:

A8= 2(’!—— 1)03’—'33.

The method described in Section 8 may now be employed to calculate the expansion
wave, after which the normal procedure may be followed in computing the bound-
ary.

Let us calculate the region directly adjacent to the discontinuity point.
It can be readily seen that the methods presented in the preceding sections
are inapplicable here, since they assume that a rather long characteristic may
be drawn from the contact discontinuity point which has already been computed
or the shock wave. It is impossible to draw any characteristics from the ini-
tial point of the discontinuity decay. Therefore, so long as the lines of the
new discontinuities do not "'diverge' sufficiently, special methods must be
employed.

For purposes of definition, let us assume that our discontinuity decayed
according to type III (Figure 30) - i.e., that a shock wave is formed to the
left, and an expansion wave is formed to the right. We may compute the region
of the expansion wave independently, employing the method presented in /101
Section 8. From this point on, we need only deal with its upper characteris-
tic, which we may assume to be calculated as far as we require.

Figure 38
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Figure 39

Let us draw the line dr = u dt from the initial point 0 (Figure 40); it
depicts the line of the contact discontinuity. Let us select point 1 on this
line so close to point 0 that every quantity may be transposed from point 0 to
point 1 without a great amount of error. Drawing the B-characteristic to the
left of point 1, we may compute point 2 of the shock wave front in the normal
procedure.

Let us place point 3 on the upper characteristic of the expansion wave,
and let us draw the B-characteristic from it until it reaches the contact dis-
continuity (point 4). Let us draw the a-characteristic from point 2; this
characteristic intersects the contact discontinuity line at point 5. By in-
tegration over these segments of the characteristics, we may compute As and By,
and then - performing linear interpolation with respect to points 0 and 5 - we
may calculate the left A at point 4 (we assume that points 4 and 5 are located
as is shown in Figure 40, otherwise we must interpolate the right B at point
5). We may compute point 4 in the normal way.

After this, let us define point 1 more accurately, interpolating every
quantity at it over the points 0 and 4. Then let us repeat the entire compu-
tation in the same order, only adding one internal point 6, calculated after
the recalculation of point 2. If it is found when the calculation is repeated
that point 4 has changed considerably, we repeat the calculation once more
until all of our six points are "determined".

We would like to say a few words regarding the calculation of the lower
quantities at point 2. If the "lower" characteristic passes nearby, we must
then select point 1 so that point 2 falls on this characteristic. If /102
there is no such suitable characteristic, we must "create" it, performing
suitable "subdividing" in the lower data.
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Figure 40

After pointsl - 6 are computed, the subsequent computation entails no par-
ticular difficulties. On the basis of the 2 — 6 - 5 characteristic, we may
compute a new point 7 of the shock wave. Bringing the oa~characteristic to the
right of point 4, we may move the B-characteristic to the right, closer to the
contact discontinuity line, and we may then complete the calculation of point
5. Let us then bring the o-characteristic from point 7, and continue the cal-
culation of the shock wave, et cetera.

If there is no expansion wave on the right, but only a shock wave, then
we would bring the characteristic also on the right from point 1, and would
compute the point of the right shock wave, which would play the role of point
3.

At the very beginning of the computation, we must perform linear interpo-
lation along the contact discontinuity line. Consequently, the first steps
(0 - 4, 0 - 5) must be so small that the error entailed in linear interpola-
tion is insignificant. The choice of point 1 is thus determined.

Along with the method presented above, there is another possible method
for computing the vicinity of the discontinuity decay point, which is based
on expansion of the solution in power series in the vicinity of this point.

Let us first present certain preliminary considerations. Let us assume
that at a certain point on the r, t-plane we know the derivatives of u, p, p

in any direction %f = m which does not coincide with the characteristic direc-

tion (m#a, m#8, m#fu). We may then determine the derivatives of these quanti-
ties in any other direction. 1In actuality, let us designate the derivatives
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in the direction m by Au, Ap, Ap:

du du
Au = — m—,
at + or
9 9
Ap—=—+m —,
P ot + or
dp dap
= — -+ m—.
P ot ar

We thus have

ot or
de ap
& Ap— 2,
a P, (12.10)
9 _ Ap —m _Qp_. |
at or )
Let us write the differential equations of motion in the form /103
(2.2):
1 /dp Op) ou du uc
— o - —_ —_— = — ——
pc(6t+ or +(6t+a0r) v
A (% Lg%\ (04 Guy _ ke (12.11)
F(6I+Bar) (61+B6r)_ 'S

and let us substitute their expressions from (12.10), instead of 'g-%, ‘g-% After

elementary transformations, we obtain

(a—m)@+(a_m)éi:_(v£+A—”—+Au).
pc  Or ar r pe (12.12)
@—myop g yOu e | 4p .

pc  Or ¢—m) ar (VT—{ pe N u).

We may regard this system as a system of linear equations with respect to

%Ej, % Its determinant is

—2(@—m)(p-—m)
pc ’

and, by definition, differs from zero.

Solving it, we obtain
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ou c(vﬁ-}—A—p-)-—(u-—m)Au

ou r pc
o (@ —m) (8 —m)
) (12.13)
cAu — (u—m) (v ﬁ-{-ﬂl)
—@ﬁ—zpc r pc
r (@—m) (@ —m)

In addition, the following equation holds [see the derivation of equation

(2.2)1]:

9 9 2
L oput. c-(% -{—u?).
r

We find the following from this equation in a similar manner

G A Oop , Bp—ecAp (12.14)

or e or ' c*u—m)

Relationships (12.13), (12.14) enable us to find all of the partial de-
rivatives with respect to r, and relationships (12.10) enable us to find the
partial derivatives with respect to t. Knowing all the partial derivatives of
u, p, p, we may readily determine their derivatives in any direction.

In particular, introducing the standard notation %E +u %; = 523 we /104
obtain the following for the direction %%-= u
d_":[ o lwmmpP L 4Tm Apt
dt (a — m) (B — m) p (a—m)(f—m)
u—m ue?
e Tme—m 12.15)

L e P e '
dt (@ —m)@ —m) (a —m)(B —m)

_u—mp  puct

@e—m)@—m) =«

Let us now investigate the case of characteristic direction. For example,

let m = o. Then, setting é—-+ o~ LA Aa’ from the second equation (12.12) we

obtain ot or

1 odp ou uc A.p
e T =y ___ PR
2 ( pc Or ar) r + pc Aau,

and from (12.10)
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du du
— = At — c—,
dt * ar
dp dp
— = Ap—cCc—.
dt P ar

3
Thus, excluding %%'and —2; we arrive at the relationship

or
i A, .
Lo d L APy, (12.16)
pc Ot dt 2 r pC ;
In addition, as always along the o-characteristic we have
A
Pt b= — v (12.17)

We must now obtain the relationship between the derivatives along the shock
wave front. We indicated above that a relationship such as (12.1) holds for
the shock wave; this relationship contains only u, p on both sides of the dis-
continuity. Differentiating it, we arrive at the desired equation. For ex-
ample, if our wave moves in an ideal gas, then - differentiating (12.1) and
designating the derivatives along the wave front by the symbol A - we obtain

Auy — Ay e+ (h 2) py] 4p, —[(2h + 1)__9_2:““}’11_‘3[’1 _ . 4p
y —uy 2(p;— p1) thpa 4+ py) 2,

(12.18)

It may be readily seen that this equation is equally valid both for con- /105
verging, and for diverging, waves.

Let us now turn to the discontinuity decay shown in Figure 40. We shall
assume that we know the derivatives of the lower quantities u and p along the
front of the shock wave emanating to the left, as well as the derivativaes of
the same quantities along the upper characteristic of the expansion wave.

The formulas which we obtained above then enable us to determine the deriva-
tives of these quantities along the wave front from above and along the contact
discontinuity.

Relationship (12.16) is valid to the right of the contact discontinuity,
and equations (12.15) are valid to the left of it. The symbol A may be em-
ployed to designate the derivatives along the wave front (from above). The
quantities %%,-%% coincide in both formulas. Substituting their expressions
from (12.15) into (12.16), we obtain am equation (linear) which relates the
derivatives Au, Ap. The second equation for these derivatives is given by
formula (12.18). Solving these equations, we may find Au and Ap, and then

from (12.15) we find %% and %%. After this, no difficulty is encountered in
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. . d
determining the derivatives Ap and E%.

We may now write the following along the contact discontinuity
u=uo+j—:‘(t—to)-:—... .
p=po+%(t—to)—i—...,
p=pot Tt —t) k...,

where the index O designates the quantities at point 0. Similarly, along the
wave front we have

u=uy-l-Au(l—t)+....

p=po+ Ap(t—1tg) 4 ... .

pu=pot- Ap(t-—tp) -t ...

The equation for the contact discontinuity line may be written as follows

, 1 d 2
r=r0+uo(t~—to)—rthi(t—to)--+ ce,

and the equation for the shock wave front may be written as

P ot Dot - 1o) +

| %[Au,—{—(Do—-u,)(AP‘z_Apl BBy .éﬂ} (1ot + .
f1

P:—pP1 Uy —

(we shall leave the derivation of this formula to the reader).

By employing this line of reasoning, we may find both the point on /106
the contact discontinuity, and the point on the shock wave (these points must
be quite close to point 0), after which the surroundings of the discontinuity
decay may be readily calculated. When necessary, all partial derivatives of
u, p, p on both sides of the contact discontinuity may be readily determined,
and they may be employed to compute the inner points which do not lie on the
discontinuities.

The derivatives of u, p, p along the upper characteristic of the expan-
sion wave and along the shock wave front (below) must be determined by numeri-
cal differentiation. Along the upper characteristic of the expansion wave, it
is sufficient to differentiate u and p, for example; the derivative A% may
be found from relationship (12.17). In order to find the derivatives along the
lower shock wave front, it is possible (provided that it is convenient) to
first differentiate u, p, p in any direction (which does not coincide with the
characteristic direction), and then to calculate the derivatives in the requi-
site direction by means of formulas (12.10), (12.13), (12.14).
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It should be noted that both methods for computing the surroundings of
the discontinuity decay point entail approximately the same degree of accuracy,
because both methods assume that the functions change linearly within the sur-
roundings of the function. The first method is most frequently preferred in
practice, since it is similar to the system for performing computations in
smooth regions and also utilizes the data which are already available to the
best extent (numerical differentiation is not required).
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13. SPECIAL CASES OF THE FORMATION OF SHOCK WAVES /107

It is well known that shock waves may arise not only from discontinuous
initial data (and boundary conditions), but also in regions where the motion is
not accompanied by any discontinuities at the beginning. Every such case of
"spontaneous" formation of shock waves is always related to the phenomenon of
the intersection of similar characteristics. The centered compression wave
which was discussed in Section 8 (Figure 14, on the left) may serve as an ex-
ample of this intersection. A shock wave is formed at the point rg, tgp.

However, such a case — when all the converging characteristics intersect
at one single point - is a special case, or — more precisely - a limiting case.
It most frequently happens that an entire region appears which is covered two-
fold by the characteristics of one set (Figure 41). An envelope appears for
these characteristics, having the cuspidal point A. A new shock wave begins
from this point. The cuspidal point of the envelope is not a discontinuity
point: it is distinguished by the fact that the derivatives of u, p, p, et
cetera, at this point are infinite. Therefore, the amplitude of the shock wave
arising at this point equals zero, and only a "real" discontinuity arises.

In practice, it is usually impossible to make a precise determination of
the location of the envelope cuspidal point or to initiate the shock wave from
zero amplitude. The shock wave '"leaves" the point at which the characteristics
of one set, which directly participate in the computation (Figure 42), first
intersect. By determining the coordinates of the intersection point, we may
find two values of A over the two a-characteristics arriving at this point
(if they intersected). Thus, a discontinuity appears at this point.

Strictly speaking, this discontinuity must be regarded as an arbitrary dis-
continuity. When it decays, a contact discontinuity and, for example, an
expansion wave are also formed, in addition to the shock wave (shown by the
dashed line in Figure 42). However, if the intensity of our initial discon-
tinuity is low, then these "side" effects may be disregarded.

In order to demonstrate this, let us turn to formulas (11.13). The value
x = 1 corresponds to a wave having zero amplitude. Let us set
x=1 4¢g,

so that /108

Let us expand the first parts of formulas (11.13) in power series of €. We ob-
tain
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Figure 41

Thus, if we disregard terms on the order of 63, we shall have

Y.=Y,, } (13.1)
v’ = vl.

These will be the relationships on the front of the shock wave produced, if it
is fairly weak (at the first point). It thus follows that the discontinuity
decay may be disregarded. Relationships (13.1) are clearly fulfilled at the
first point where the characteristics intersect. Therefore, it is sufficient

to bring a (weak) shock wave from this point without any contact discontinuities
or other effects accompanying the discontinuity decay.

We would like to point out that in actuality there is no discon- /109
tinuity decay, because relationships (13.1) are fulfilled at the apex of the
envelope.

No particular difficulties are encountered in computing a shock wave which
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Figure 42

is thus formed. As a rule, its amplitude increases quite rapidly at the first
points, until it reaches a certain ''normal' level, after which it changes com-
paratively slowly.

Cases are possible in which the shock wave, being weak when produced, re-
mains weak from that point on, so that relationships (13.1) continue to be
fulfilled within the limits of the assumed accuracy. On the other hand, a
"normal,” strong shock wave can later become weak; there are possible cases in
which weak shock waves are produced during a discontinuity decay. In all such
cases, we must employ formulas (13.1) which are incomparably simpler than the
customary relationships for the wave front. We must add that the expression
for the wave velocity D for weak waves is simplified considerably. It can be
readily found from formulas (11.8), (11.9) and (11.12) that
1 (r e+ (ta)] - Vhr+1 .

L e e N G

/S h—1 x—1 xS
b Vaixyr1 = 2 )

Vx Vxth

1
Y i T o l/

2 yhrF1

Expanding the right part in powers of ¢ = x — 1, we obtain

L[D__ (U 4 ca) 4+ (1 £ ¢)) ]= h* & -
¢ 2 8(h + 1)
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Thus, within an accuracy of terms on the order of 32, we have

.&%;EL for diverging wave

D=1 8+8 . (13.2)
—  for converging wave

It is true that the accuracy of (13.2) is one order of magnitude less than that
of (13.1), but it may be successfully employed in several cases.

The computation of weak shock waves has several distinguishing features.
The quantity D differs very little from a (or, accordingly, B). Therefore, the
"overtaking' characteristics are almost parallel to the discontinuity line,
intersecting it at a very narrow angle. This fact makes it almost impossible to
employ the second method for computing shock waves (Section 11, Figure 29):
the coordinates of point 2 are determined with a great amount of error. The
first method must always be employed when computing weak shock waves (Figure 28).
We must point out that point 3 is frequently very close to point 1; therefore,
one may employ linear interpolation in order to find quantities at this point.

It must be noted that it is only necessary to compute the weak /110
shock wave if, for some reason or other, it is necessary to trace all the de-
tails of its motion as accurately as possible. In general, weak waves may be
disregarded. In actuality, according to formulas (13.1) the corresponding
Reimann invariant and entropy do not undergo a discontinuity along the "inter-
secting'" characteristics, and therefore they may be integrated through the dis-
continuity line. Thus, the necessity of an accurate determination of the wave
front position is eliminated, and the calculation may proceed as though there
were no discontinuity. It is true that the "overtaking" characteristics may
intersect from time to time, and they must be discarded, but this fact entails
no special complications.

g e
Figure 43

The phenomenon of shock wave formation with continuous initial data, which
we investigated, plays an important role in the problems related to the
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Figure 44

"smoothing out" of the discontinuities. When solving a certain problem up to

a specific moment in time t, if we attempt to eliminate the shock waves by re-
placing the discontinuous initial data (for the subsequent stage) by the con-

tinuous data [see Figure 43; the graph of u(r) is given as an example], as the
calculation proceeds all of these discontinuities are rapidly restored due to

the intersection of the characteristics. Thus, it is useless to "smooth out"

the strong shock waves.

This pertains only to the method of characteristics investigated here.
In recent years, difference methods for numerical integration of equations of
hydrodynamics have been widely discussed, beginning with the work by Neumann
and Richtmeyer*. These methods are based on "smoothing out" the discontinui-
ties. The difference equations are chosen so that the integral laws of con-
servation (1.19) are always fulfilled (within a certain degree of accuracy)/1l1
independently of the nature of the functions to be computed. The solution is
everywhere continuous; instead of discontinuities, there are regions of rapid
change in the quantities - the discontinuities "are smoothed out".

In certain respects, these methods are inferior to the method of charac-
teristics. They do not enable us to follow in detail all of the discontinuities
—~ both strong and weak — or to derive a comprehensive and detailed picture of
the motion, the exact boundaries of the regions of influence, et cetera. On
the other hand, they have several definite advantages, the most important of

% Neumann, J. and Richtmeyer. J. Appl. Phys. 21, 232-237, 1950. See also
Godunov, S. K. Uspekhi Matem. Nauk, 12, No. 1 (73), 176-177, 1957.
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Figure 45

which is logical simplicity. The discontinuities do not differ in formal
terms from the "smooth" regions, and may be computed according to the formulas
which apply to them.This fact is most important when performing calculations
on electronic computers.

It is fully possible that cases may arise in which one part of the problem
is calculated by one method, and the other part is calculated by another method.
Let us assume, for example, that the beginning of motion is computed according
to difference formulas based on "smoothing out" of the discontinuities. Let
us assume that the computations are performed up to a certain moment in time
t = tg. After this, the computation is continued by the method of characteris-
tics for certain reasons. For this new stage, the results derived from the
preceding calculations - which provide the values of the functions of u, p, o,
etc., to be computed in the case of t = ty - will serve as the initial data.

It follows from the statements presented above that if such initial data
contain smothed shock waves, then, during the subsequent computational process,
these shock waves will be produced very rapidly again as "real" strong discon-
tinuities. Therefore, before the computation is initiated using the /112
method of characteristics, it is recommended that the initial data be studied
carefully, in order to discover beforehand all of the "hidden" shock waves
and to convert them in the initial data into strong discontinuities in order
to eliminate the necessity of dealing with the intersection of characteristics
at a later point.

This unusual "stability" of the shock waves does not extend to the contact
discontinuities. If such a decay is smoothed out, it is not ''spontaneously"
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restored. It does not follow from this, however, that - for example, when a
shock wave passes through such a "hidden" contact discontinuity - the phenomena
accompanying the shock wave passage through a "real" discontinuity will be
completely absent. If, for example, we try to smooth out the contact discon-
tinuity shown in Figure 32, when the shock wave passes through it the picture
shown in Figure 44 is obtained. The region of the "diffused" contact discon-
tinuity is shown by the dashed line. As we may see, the difference lies entirely
in the fact that the expansion wave passing to the left is not a centered wave.
If the nature of the discontinuity decay were different - if the shock wave
passed to the left - we would obtain the picture shown in Figure 45. '"The left"
shock wave arises due to the intersection of the characteristics. As can be
seen, no important simplifications are introduced when the contact discontin-
uity is smoothed out. It must be added that if the region of the smoothed-out
contact discontinuity is as strong as desired, it will contain large gradients
of entropy, density, and other quantities. This causes the error to increase
and leads to the necessity of decreasing the step in this region. Therefore,
we cannot recommend that the strong contact discontinuities be smoothed out.

The weak, small, and unimportant discontinuities may be, and frequently must

be, disregarded.

117



14. SEPARATION /113

As we have already pointed out, the possible formation of zero and nega-
tive pressures designating the phenomenon of temsion is a characteristic fea-
ture of substances with an equation of state such as (5.15). In all such cases
we must consider the possibility of destruction of the substance.

The problem of how much tension a certain substance may sustain under
given conditions is quite complex, and we shall not investigate it. We shall
select only one, rather idealized scheme for the phenomenon under considera-
tion. We shall assume that our substances cannot sustain negative pressures,
in general. This assumption may be regarded as valid when we are dealing with
motion accompanied by such large positive and negative pressures that the
tensions, which our substance can sustain, can be disregarded.

Ig

%
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Figure 46

From a purely thermodynamic point of view, it may be assumed that we are
investigating a substance with the following equation of state:

p =: { a (kp = Pa)s kP x;/;)//p;:‘ (14.1)
0, kp™ < pq.

The curves p = p(p) in the case of k = const consequently have a bend (Figure
46). As we may verify, this fact has a significant influence on several of

the computational steps.

According to our definition expressed by equation (14.1), no regions of
negative pressure may arise. Instead, regions of zero pressure appear, which

118



correspond to the motion of the destroyed substance. We shall call them reg-
ions of separation. In the region of separation, the motion satisfies the
equations (1.19) - (1.20); only condition p = O must be taken into considera-
tion.

However, it will be more advantageous for us to emply the equations of
gas dynamics in the Lagrange representation, and we may select the quantity g
equalling the mass M which is determined by equation (1.4) as the Lagrangian
coordinate. /114

dg = prV(dr — wudb).

As is known, the Lagrange equations have the following form:

() - =o
ot p og
du v dp
w e =
9 (14.2)
& _
at
I~
ot
2 ¢
p<0
p>0 A
A
Figure 47

It follows from (1.4) that p = r Y é-g'along the cross section t = const. There-

or
fore the equation of discontinuity may be written as follows
1 0op u ,au)
—_——_— |V — r —.
il G » (14.3)
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We should also point out that relationship (1.4) may be rewritten as fol-
lows

dr' = L dg + vur"' dt,
L3

and therefore arY "

It follows from the Euler equation [the second equation of system /115
(14.2)] that in the separation region, where p = 0, the particles of the sub-
stance move independently of each other with constant velocities along recti-
linear trajectories. Integrating the last equation of system (14.2), we ob-

tain

r—ut = f(u), (14.4)

where f£(u) is an arbitrary function.

In order to determine the density p, let us differentiate (14.4)

dr—udt = (t+ |')du.

The prime sign designates differentiation with respect to u. Substituting this
expression in (l.4), we obtain

dq =pr’ (t + ') du. (14.5)

The right part may be an exact differential only when prv (t + £') depends

only on u, i.e.,
pri(t+ [') = F ().

We thus have

F (u)

un (14.6)

p:
where F(u) is a new arbitrary function. Since the velocity u is a function of
q (or R), in the separation region

s = s {u). (14.7)

Formulas (14.4), (14.6) and (14.7) provide the total solution for the equa-
tions of motion in the separation region; therefore, numerical integration is
superfluous here. The arbitrary functioms f(u), F(u) and S(u) must be de-
termined at the moment the separation is formed. Let us now discuss this step.

Let us first assume that we have calculated a certain region according to
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the equation of state (5.15), and let us assume that as a result we have arrived
at a negative value of p. Let DBE (Figure 47) be the line on which p = 0. The
separation must develop in the region lying above this line.

Let us investigate the trajectory ABC of a certain particle. The BC por-
tion of the trajectory will lie in the separation region; in particular, p is
determined by formula (14.6). It is apparent that the separation can be formed
only if, according to (14.6), p continues to drop after passing through the
point B. We may now show that in order to do this it is necessary and suffi-

cient that the direction of the line p = 0 be spacelike at the point B.

In the separation region u is a function only of q. Therefore, the /116
derivative of the function p with respect to time along the trajectory may
be written, according to (14.3), in the following form

1 ()p u vdu
—— A=~y — - pr — .
P’ (=T dq) (14.8)
/
N .yy
N
2|~ v
N
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N
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N
~
N
N
AN
N
N
A Y
A Y
Figure 48

For the formation of the separation, it is necessary and sufficient that the
right part in (14.8) be negative or, which is the same thing, that the expres-
sion in the parentheses be positive. This expression may be computed by taking

the quantities u, p, r at point B and the derivative %% by differentiation along
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the p = 0 line - employing the functions in the region outside of the separa-
tion.
du

Let dq = 2 dt hold along the curve p = 0. Then Easand consequently the

. 3 . . . . . .
derivative 5%3 can be expressed by partial derivatives in the region outside

of the separation according to the following formulas

du ou  10u (14.9)
dg 9q A ot
and
_1_(2_&~, —-(v—i‘— |- pr"gi‘- ,<;_t_r:91_z)
p o r dq X O, (14.10)
Let us express %% and %ﬁ'along the p = 0 line by %ﬁ-on this line. /117

It follows from the second equation of the system (14.2) that

W _ P

Py r " (14.11)
Since the following equation holds along the p = 0 line

ap op

- AL —

at%’ % 0, (14.12)

by employing the 3rd and 1lst equations of system (14.1) and (14.4), we obtain
the following relationship between 2u and %& along the p = 0 line:

aq
BB d (1)l
dq ot at \ p dg
du ar’ du v
=~——c”(r'——— z—):—-c“(r‘—~ u—J\.
P dq - taq P 0q+ P’)
Substituting the expressions obtained for %%-and-%% in (14.10), we obtain the
value of the derivative g%-along the trajectory in the separation region as
follows
c ; v A
_"-()_P_—;(_C[?r __._")(_,Er‘.
p Ot A eer/og (14.13)

. 1
Let us designate 5 by y. The expression in parentheses is then'; - y.

cpr
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Figure 48 presents a graph of this function. An examination of this graph

readily shows that %% <0 is fulfilled under the following conditions:

(1) 4if i 0, then either y < - 1l or 0 <y < 1,
aq ¥

(14.14)
(2) if %g-> 0, then either y > 1, or - 1 <y < 0.

In actuality, in the first case only the inequality y < — 1 can hold, and

in the second case -~ y > 1 - because the inequality %§'< 0 %E > 0) means that

the region outside of the separation lies to the left (to the right) and below

the p = 0 curve in the (q, t) plane - i.e., A = %% < 0 (> 0). Since cpr’ > 0,

y must have the same sign. According to (1.4),

dyg dr |
A2 spr (S .
a P
We thus have /118
—1 in the first case
y=—)‘T=L dr ){< in e firs se, (14.15)
cpr ¢ \at >1!  in the second case.

Consequently,

dr

_— U—cCc=

dt<: P in the first case, (14.16)

dr
d-t>u+f=°‘ in the second case,

This means that the p = 0 line at a given point is spacelike, which must be
proven.

Let us now assume that as a result of the computation with negative pres-
sure we have obtained the p = 0 line, which is located as is shown in Figure
49 with respect to the grid of the characteristics. To the right of point A
this line is spacelike; to the left of point A it is timelike. According to the
statements presented above, the separation develops to the right of point A be-
yond the p = 0 line; there is no separation to the left of point A. Conse-
quently, the AC line must exist, which delineates the separation region to the
left; to the left of this line p > 0 will hold everywhere. Thus, the quantities
within the angle BAC differ from those which would be obtained with allowance
for the separation. This region is subject to recalculation. In concrete terms,
this must be expressed in the fact that @g-characteristics - which enter this
region through the AC line ~ must carry with them the Reimann invariants re-
flecting the influence of the separation in the region lying to the right of the
AC line.
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Figure 49

However, there are no o- and B-characteristics in the separation /119
region. The particles move independently of each other, and all of the inter-
action is transmitted only along the trajectory. 1In order that the effect
indicated above may be manifested, this means that it is necessary for the
particle trajectories, which intersect the line p = 0 to the right of point A,
to also intersect the line AC, 1In other words, there must be a flux of mat-
ter from right to left through the line AC.

There is no basis for assuming that all of the quantities change contin-
uously through the line AC. Formula (14.6) shows that the demsity p on the
trajectory within the separation is determined exclusively by the initial data
on the p = 0 line; when the trajectory reaches line AC, p upon it may have any
magnitude. To the left of the line AC, p > O must hold which - according to
the ecuation of state (14.1) - imposes specific limitations on p.

All of these statements show that the line AC is a shock wave. We shall
now derive the relationships for the front of this wave (it is apparent that
the formulas which we obtained previously are unsuitable; the lower quantities
do not satisfy our customary equation of state). We may start with equations
(9.13), which we obtained directly from the laws of conservation. Let us

commence with the derivation of the Hugoniot adiabatic equation.

. The expression for the internal emergy of our substance is known [see
(11.14)]:
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e PHees (14.17)
=—1)p

However, this formula is not applicable within the separation region. The par-
ticles do not interact in this region; the internal energy of each particle
remains constant. It immediately follows that in the separation region & re-
tains a constant value along the particle trajectory, and does not depend, in
particular, on density p.

On the p = 0 line, we shall have

o Puf-‘:
(x—1p '
or, according to (5.21), we have
02
g =
*—1 (14.18)

(since p = 0, then z = 1). Since both v and € remain constant during subse-
quen motion along the trajectory, (14.18) remains valid within the entire
separation regiom.

The third relationship (9.13) may now be written as follows /120
Pz+PoC:__ v} ___pz'_1_~_1)
c—Np  x—1 2(9: e/’
P2

Let us set 0 = P After simple computations, we obtain the following

Hugoniot adiabatic equation,
G_jm+m—0w&

ps+(h — 1) pro} (14.19)

Substituting z for p, according to (5.19), we obtain

heftt 44
- 2 * (14.20)
2 4 Py
2 Pol-‘:

g =

It follows from (5.21) that
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Therefore, we have the following from (14.20)

S 2
ht1 1)
. A ) 2y
gl pm g (14.21)
% phti g

p
where T is designated by 6.

We may write the second equation (9.13) in the following form

(ty— -ty — — p—"(i—'— 1) )

pr \S

and by means of (14.20) we may readily obtain

P | N
, @ -1 l(h»—nz.’_:"“—(h+u ﬁ;‘+2J
(s ~ ) = L L & J (14.22)
2 1 1.81 hZ._’;-*-l *_ 1
Finally, the first relationship (9.13)
D- - : i " (s - 11y)
may be reduced to the following form
Lt
D—wy- e ().
(h— 1) P —p) 5,;l+2 (14.23)
o
Collecting the formulas (14.21) - (14.23) all together, we obtain a /121
system of relationships for our shock wave
Py
, et ——1)[(}; — ) 1)°_‘:_1+2J
C
(”2”_111)2 . I . A ,
By h2h g
R S PR i
Uz . izh -1 o (14.24)
2 = 2 —_—— —
& R2BEY 44
hzy -1
D-—u = —— 2 o (uy — wy).
(n—i)z;'+l—(h+1)_.“;l,4_.z
cO
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Equations (14.24) are completely similar to equations (11.6); the shock
wave may be computed by the method presented in Section 11.

Thus, the separation may be computed in the following way.

After a pressure decrease below zero has been detected, the line p = 0
must be determined on the r, t plane. This is done by a small computation in
the region of negative pressures, with subsequent interpolation along the
characteristics for the value p = 0 (or, which is the same thing, for z = 1).
The quantities r, t, u, v, §, R are determined at points on this line.

There is a spacelike segment on the line p = 0. The shock waves enclos-
ing the separation will emanate from the ends of this segment.

The quantity f = r — ut may be computed at all points on this segment. A
table may be compiled, whose argument is u, and whose function is f. Then, by
numerical differentiation according to this table, we may obtain the derivative

f' = %% and may calculate the following quantity

F=or(+1)
The values of f' and F at each point on the initial segment of the p = 0 line
are written in the third and fourth columns of this table. The fifth column

contains v and the sixth column contains the Lagrangian coordinate R.

After this table is prepared, the shock waves enclosing the separation may be
computed. As a rule, they have zero amplitude at the initial point, and the

quantity D remains indeterminate in contrast to "normal" waves. This may be
explained by the discontinuity in the equation of state (see Figure 46). The
derivative dp

30 does not exist at the discontinuity point, and therefore the speed

of sound ¢ is indeterminate.

We must set D = u at the initial point. It is recommended that the first
step along the wave front line not be too small, so that a fairly accurate /122
determination of D may be made at the first computed point.

After the coordinates of the subsequent point on the front are determined,
it is necessary to find the lower quantities uj, vy, pi. The quantity u; may
be found from the equation

r— ut = f (u)

by means of the table compiled. Substituting the values of r, t, which have
been found, in this equation we may determine u by the customary numerical solu-
tion of the equation, employing the table of the function f(u). In several
cases, this function may be quite accurately approximated by the line
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f=au-+b.

Then the equation may be clearly solved as follows:

r—b
a{—t'

=

It must be noted that this approximation is advantageous if the entire separa-
tion region may be encompassed by one linear function. If discontinuities are

produced in the function f(u) as the result of the "piecewise” approximation -
i.e., discontinuities of the derivative - this leads to discontinuities of §i,
and the decays of these discontinuities must be computed at the corresponding

points on the enclosing wave front.

After u; is determined, we may find f' and F from the same table and may
determine §;:
_F__
i)
We may then find vy and Ry directly from the table (R; is necessary to deter-
mine Ry = R;). The subsequent computation of the wave point proceeds in the
normal manner.

3, =

If a normal shock wave "overtakes' the wave enclosing the separation, the
arbitrary discontinuity which is produced may be computed in the normal manner.
Usually when the shock wave "cuts in" into the separation region, it leads to
the rapid enclosure of it. Naturally, expansion waves have the opposite effect.
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15. INTEGRAL CONTROL /123

In Section 4 we have already discussed the different methods for control-
ling the accuracy of numerical integration. We then discussed "local" control
and a determination of the error within the limits of one or several steps. We
shall now discuss determining the accuracy of the solution for the entire prob-
lem as a whole, when the main computations have already been performed. Such
control may be conveniently exerted by verifying that the laws of conservation
have been fulfilled. This may best be achieved by employing their integral
form (1.19). We shall make a separate determination of each method to be em-
ployed in verifying that the laws of conservation of mass, momentum, and energy
have been fulfilled.

Figure 50

The conservation of mass may be checked by means of the Lagrangian co-
ordinate R. We already discussed in Section 4 the rational selection of the
integration direction of R. We shall now investigate this problem from another
viewpoint.

Let us commence with the following simple example. We shall assume that
we are investigating the passage of a shock wave through a gas at rest under
the influence of a plunger which moves in a definite way. Let the line AB
(Figure 50) express the movement of the plunger on the r, t plane, and the line
AC - the shock wave front. The quantity R retains a constant value on /124
the AB line; we can set R = r on the AC line. Let us select any BR-character-
istic 1 - 2, and - after this characteristic is computed entirely - let us
integrate R along it from point 1 to point 2 employing the quantities R' which
have already been calculated at every point of this characteristic:
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—Ry=— 5 Rdt. ' (15.1)

We may find the same difference by another method. In actuality, we knew Rp
beforehand, and R; = r;. The difference between these two results enables us
to make a specific determination of the over-all computational accuracy within
a triangle with the apexes at points A, 1 and 2. We may introduce a certain
quantitative determination of this accuracy. Setting R; = r; in formula
(15.1), we obtain R, from it, which we may designate by Rg in contrast to

the "exact" value of the same quantity Ry, = R,. The equation

‘Ri—R, (15.2)
R:— Ry
may serve as a measure of the accuracy with which the law of conservatlon of

mass has been fulfilled. Since the mass is proportional to RY, we may employ
another quantity in addition to 6R:

3R =

v __ R‘v
= T (15.3)
Rz— R;

Both of these quantities SR and sR” may be advantageously expressed in percents.

It is impossible to draw any simple connection between SR and $RY with the
errors of our computational results. On the other hand, the requirement that
SRV does not exceed 1% represents a definite requirement for the over-all com-
putational accuracy. In exactly the same way, if we had the computational
results for two problems, and if the control of the conservation of mass de-
scribed above provides aquantity on the order of 0.5% for SRV in the first case -
and a quantity on the order of 5% in the second case - then we may state with
a great degree of certainty that the first computation is significantly more
accurate than the second.

From the very beginning, if we agree to integrate the Lagrangian coordin-
ate R along the B-characteristics in this problem, we avoid the necessity of
making a separate computation of the integral (15.1), and Ro* will automatic-
ally be obtained at each point on the boundary AB. It is then possible for us
to trace the changes in the determination of SR and SRV during the computational
process, and to employ the appropriate measures (for example, to decrease the
step) concurrently, in the case of their systematic increase. If inte- /125
gration of R along the B-characteristics is disadvantageous (for example, due to
the rapid change in R' in this direction), we may similarly determine the ful-
fillment of the law of conservation of mass along the a-characteristics (3 - 1
in Figure 50). We shall compare Ry = r; with Ry* calculated by integration
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1
Ri =Ry +\Redt.

The quantities SR and sRY may be computed in the following way:

Ry —R; R — R — Ry

R = .
Ry, —Ry R; — R}

It may happen that the problem is to calculate the line of the shock wave front
AC up to point 1 and the boundary AB up to point 2. When the computation is
completed, the integral (15.1) must also be computed., If the nature of the
change in R' does not enable us to trace it with sufficient accuracy based on
the formula in the table, it is then advantageous to employ a more precise
quadratic formula - for example, (4.1).

Finally, it is possible that it may be advantageous to compute the
Lagrangian coordinate R along the a-characteristics in one section of the re-
gion under consideration, and along the B-characteristics in another section.
The control of the law of conservation may then be exerted on the boundary of
these sections (Figure 51, the boundary of the sections is designated by the
dashed line). Two values of the Lagrangian coordinate are obtained at point 3.

3 ]
Ry =R+ \ Rdt, R =Ri—\Rdt.
2 X 1
The "accurate" wvalues of Ry and R; are chosen — the constant value of Ry on
the boundary and R; = rj on the shock wave. We then obtain

BRE—W R; _R: *
Ry — R.

BRv - R; V__R:’V
R' —R!

The region between the two contact discontinuities may be controlled in a
similar way. If, for example, R is computed along the a-characteristic, then
a value corresponding to the right discontinuity is attributed to the Lagrangian
coordinate R at point 1 (Figure 52). We shall then have two values at point 2 -
the "accurate' value corresponding to the right discontinuity, and the value
obtained as a result of integration along the 1 - 2 characteristic. /126
Just as previously, we may compute SR and SRV and may employ them to determine
the accuracy of the conservation of mass in the given region.

It is also recommended that the Lagrangian coordinate R be calculated for

the shock waves by integration along the front line. Since the equation of
this line is dr = D dt, we obtain the following from (1.17)
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Figure 51

Figure 52

dR = a(l_;_)”(u_u)dt, (15.4)

where, as always § = %Eu Formula (15.4) may also be rewritten in the following
form

_D—u ,,
dR = 2= R'dt. (15.5)

Employing these formulas, we may integrate R directly over the shock wave front.
The values thus obtained may be compared with the values interpolated accor-
ding to the lower data. When the shock wave reaches the contact discontinuity,
the corresponding comparison may also be performed, and a definite conclusion
may be reached regarding the accuracy with which the law of conservation of
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mass is satisfied.

Leaving the law of conservation of momentum, let us turn to the law of
conservation of energy. The quantity E, which may be determined by the third
formula (1.18), may not be computed at each point, and therefore for a control
of the conservation of energy we must integrate the following expression

i = (v )i —afo e+ )

separately, choosing a closed contour encompassing the region to be controlled
as the integration path., It is frequently advantageous to express the energy
differential in Lagrangian coordinates [see (1.22)]: /127

dE = p, (e + ‘§) R'dR — uprvdt. (15.7)

Let us express it by our “working' variables u, v, z.

For an ideal gas, we have the following on the basis of (11.1) and (5.2)

c?
% (% —1) )

Substituting this expression in (15.7) and allowing for (5.11), we obtain

o [— LR — B oty
d5~p0[1(1_1)+2RdR 2 uhtirde. (15.8)

In particular, dr = u dt along the trajectory, i.e., dR = 0
dE = — % uziipdt, (15.9)
*

For an equation of state such as (5.15), the formula for internal energy
has the form (11.14). In several cases, however, it is advantageous to de-
termine that € = 0 in the case of p = 0 and p = pg, by adding a constant com-
ponent to this formula. In order to do this, we must set

o Ptea % (15.10)
(x—1p 2»—1

By means of formulas (5.19) and (5.21) we may now write

Py 02 c

&= + o= Ta—1 (15.11)

o % (2 —1)

and the energy differential assumes the form
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3 3
dE=p.[—1—"'—+‘-‘-'+-1'—~—°“—JR'dR—'%u(z"+'—l)"d¢- (15.12)

(x—1) 2wt x—y

In particular, we have the following along the trajectory

dE = — 22y it _ 1)y, (15.13)
k2

We should point out that we can transform formula (15.12) so that it
formally coincides with (15.8). In order to do this, we may write (15.11) in
the following form (for purposes of convenience we shall discard the constant
component)

e .8
¢= % (% —1) t %3
And we now readily obtain 128
Y L -
dE = p, [__‘{'__ + E_’] R'dR — P20 yaniaps gy BP0 (Bi‘f + ur"dt)
% (x—1) 2 % % 8

However, formula (1.21) shows that the expression in the parenth'eses is rvdr.
Therefore, the third component may be written as follows

2
d[_P_w_?__ ,'v-i-l] .
(v+1)»
Since r is everywhere continuous, during integration over any closed con~
tour this differential yields zero. Consequently, for a control of the law of

conservation of energy we may also employ the following quantity, in addition
to E

E = E—— "% o,
v+
For its differential, we have
. Lall 2 prap — 8 sy
dE -—pn[x(%_i) + 2]RdR — uzhtyr dt. (15.14)

It must be stipulated that formula (15.14) may be employed advantageously only
if we are dealing with one substance. Otherwise, E* will have a different mean-
ing in different regions (in view of the difference pgy, ¢g and x), an inte-
gration of its differential along the contact discontinuity dividing the two
different substances will lead to different results ~ depending on whether we
select the right or left valuesfor the integrands (E* ungoes a discontinuity on
such contact discontinuities). This entails additional difficulties, and
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therefore formula (15.12) must primarily be employed.

The law of conservation of energy may be suitably controlled as follows.
Let us delineate on the r, t-plane the region included between two contact
discontinuities (as a rule, between the boundaries separating differ-
ent substances). Let the computation of this region begin with t = tp and
conclude at t = t; (see Figure 53). By integration over the lines t = tg and
t = t1 (in both cases -~ in the direction of an R increase) we may determine
Ep and E; of the total energy included within the layer we have selected at the
moments tg and t;. By integration along the layer boundaries (in the direc-
tion of an increase in t), we may then find the work A; and A, of the pressure
forces at these boundaries. According to the law of conservation of energy the
following must hold

Ly --E,. - A, -A.

The difference between the right and left parts of this equality, ob- /129
tained as a result of the integration, may serve as a measure of the accuracy
with which the law of convervation of energy is satisfied.

t’t:,

t=ty

Figure 53

However, this quantity still does not present an idea of the accuracy of
the problem's solution. It would be desirable to have a certain relative de-
termination which would make it possible to express the distribution of the
balance of energy in percents. In addition, it would be advantageous to require
an "additive property" from this determination, which would be as follows. Let
us divide the region to be controlled by a certain line into two parts, and let
us perform the computation in each part separately. It is necessary that the
determination pertaining to the entire region as a whole be included between the
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determinations pertaining to each part separately.

We can make such a determination as follows. First of all, let us stipu-
late that during the integration we always go around any contour in the counter-
clockwise direction. We shall integrate the differential (15.7) over this
contour, beginning with a certain point where we shall set E = 0, The quan~
tity E will increase on certain sections and will decrease on other sections,
when moving in the direction we have selected. Let us calculate the integral

I+ separately over all the sections of an increase, and let us calculate I

over all the sections of a decrease. Their sum will be close to zero. Let us
now set

Y
B == (15.15)

As may be readily seen, this quantity has all of the requisite features. We
shall select it as the determination of the accuracy with which the law of
conservation is satisfied.

Let us now turn to Figure 53. Let us assume that both integrals E; and E;
are positive (as will be case in the overwhelming majority of cases), and that
the integrals A; and A, are negative (which will hold if u > O, p > O along
both boundaries). We may perform the calculation as follows

(Ey — Ay) — (Ey — Ay) .

oF =
Eo—Al
If Ay and A, are positive, then /130
of = (Lot A)— (Bt A)

Ex+ A,
In every other case, we must turn directly to the rule formulated above (15.15).

If the motion is initiated from a state of rest, so that u = 0, p = const,
p = const will hold in the case of t = ty, the computation of Ep is then sig-
nificantly simplified. For example, for an ideal gas we have

poc? v41 V-4 ¥

E°“(v+1)x(x—1)(R’ R™).

If p = 0 then Ejp = 0. Just as for a substance of the type (5.15), Eg = 0 is
obtained in the case of p = 0, p = pg [this was the reason for introducing a
constant component in formula (15.10)]. The upper integration path (as well as
the lower) need not be chosen in the form of a horizontal line; it may be any
line defining the region to be calculated above., The region to be controlled
may contain as many shock waves and contact discontinuities as desired. It is
expedient not to control the problem as a whole, but in separate layers, espe-
cially if these layers differ greatly in terms of their physical properties.

136



We must now investigate the problem of verifying the law of conservation
of momentum. In the case of flat, one-dimensional motion (v = 0), the control
of the solution by this law does not differ, in essence, from the control over
conservation of energy, and we shall not discuss it. With respect to cases of
cylindrical and spherical symmetry, very serious difficulty is entailed. This
difficulty is related to the fact that the integral law of conservation (1.10)
contains an area integral. The calculation of these integrals entails very
time-consuming work; it is valid only in particularly important cases. The
verification of the conservation of momentum may not therefore be regarded as
a "working" method for controlling the accuracy with which the problem is
solved. In view of this, we shall not investigate this problem.

Both methods of integral control presented above may serve for verifica-
tion of the over-all accuracy of numerical integration, and for the determina-
tion of computational errors. It must be only kept in mind that they cannot
reveal all of the errors. For example, they cannot reveal such errors as errors
in equations of state, boundary conditions, et cetera - in short, errors desig-
nating the substitution of one problem by another. The wvalidity and accuracy
of the solution for the problem may be adequately verified only if all of the
control methods which have been examined are combined during the process:
both local methods and integral methods.

If an abnormally large disturbance of the balance is found when the /131
conservation of energy is checked in any region, and the local control methods
(recalculations, et cetera) provide no basis for explaining this fact by a
great amount of error in the numerical integration, it must then be assumed
that there is a computational error. In order to discover it, the region to be
studied may be divided into two portions, and each portion may be controlled
individually. The portion which contains the error must be subdivided further,
et cetera. In this way, it is almost always possible to localize the error
comparatively rapidly, and to completely expose it.
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APPENDIX 1. PROGRAMMING PRINCIPLES

1. GENERAL REMARKS /132

The tendency to employ electronic computers for purposes of maximum mech-
anization and automation in solving the problems we are investigating is fully
understandable, and necessitates no special justification. However, the
programming of the characteristics method presented here entails several dif-
ficulties related primarily to the comparatively great logical complexity of
this method. We do not know of even one programming variation in which all of
these difficulties may be overcome. Nevertheless, we feel it is advantageous
to present a brief description of one of the variations. It is understood that
the programs to be described are far from perfect. However, on the one hand,they
may be recommended for use in practice, and on the other hand they may serve
as a basis for the development of new, more refined variations. For fully un-
derstandable reasons, we shall not discuss all of the logical and computational
details, but shall confine ourselves to only a very general description.

The principles for compiling a program depend on the structure of that
class of problems for whose solution they are intended. If, for example, we
are dealing with problems of a strictly determined structure (for example,
that shown in Figure 49), then the programming encounters very few fundamental
difficulties. However, we are interested in programs which could be regarded
as having universal application. Thus, different problems may contain a
different number of discontinuities -- contact discontinuities and shock
discontinuities; the substances may have different types of equations of state;
the boundary conditions may change from problem to problem, etc. The programs
must thus be compiled in such a way that they may be applied to different
problems without entailing any changes.

When speaking of the universal application of a program, we are employing
the term universal application in a relative sense —- the varietyof imaginary
types of problems is infinite, and the attempt to produce an absolutely univer-
sal program is doomed to failure. We must now introduce any limitations on
the structure of the problem. With respect to the programs which will be de-
scribed here, the possible class of problems will be characterized in detail
below. We would like only to point out that the solution of this class /133
of problems must be regarded as one of the most real problems. Every new
program must first be evaluated from this point of view.

It is also clear that even under the limitations discussed above, the
"universal' program must inevitably be of such a great volume that it cannot be
placed in the operative memory of the types of machines presently in use.
Therefore, we can only speak of producing a collection or set of programs
which - when operating in a specific order - could replace each other in the
operative memory. Before the initial computation, all of these programs must
be written in the outer memory (for example, on a magnetic drum), and may
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then be transferred to the operative memory when needed. On the one hand, this
imposes certain demands on the construction of the computer and, on the other
hand, creates specific conditions for greater flexibility during the operation
of the program. Although the complete set of programs may be extremely exten-
sive, for a specific, given problem it is only necessary to select those pro-
grams which are necessary in the given case.

Before the beginning of the computation, the total structure of the given
problem must be coded in some manner, and be introduced into the machine to-
gether with the initial data. The sequence of calls and the operational regime
of the separate programs must be determined by this information regarding the
structure of the problem. Thus, in addition to purely computational functions,
the programs must also first fulfill specific logical functions. Each program
must ""know' at the moment it is called the order in which it must operate, and
which program it must call after it has finished. Since each program must be
designed to operate under very different conditions, the task of interpret-
ing the coded information regarding the structure of the problem and of de-
termining the operational order of the program will present a very serious
problem.

This problem was solved by introducing special logical programs. Thus,
the programs are divided into computational and logical programs. The compu-
tational programs fulfill all of the basic computational work; their logical
functions are minimal. These programs include programs for calculating a part
of the characteristics, the point of the contact discontinuity, the point of
the shock wave, etc. When they are called into the operative memory, they
always perform one and the same computation according to the established
scheme, independently of the over-all structure of the problem. They select
the initial data from the locations indicated to them; the results are located
also in the indicated locations. When the operation is completed, they call
the programs indicated to them previously.

The logical programs do not perform any "useful'" computations. /134
Their function is reduced to controlling the computational program and to in-
suring their normal operation. They determine the sequence of calls for the
computational programs, when necessary they include in the cycle - or on the
other hand, exclude from the operation - the individual computational programs,
they prepare the initial data, they distribute the results, etc. The opera-
tional order of the logical programs depends entirely on the structure of the
problem.

2. GENERAL SEQUENCE OF THE COMPUTATION

The programs which we shall discuss were designed for the "Strela-1"
machine; therefore, we should give a brief description of this machine before
the following discussion.
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The operative memory of the machine which is comprised of cathode-ray
tubes contains 2047 elements, each of which contains one 43-digit binary
code. 1In addition, there is a magnetic drum (about 5000 elements) and an
almost unlimited outer memory on magnetic tapes.

The numbers in the memory of the machine are presented in a binary number
system as a floating point decimal. Thirty-five binary digits are assigned
to the mantissa, which corresponds to approximately ten decimal digits. The
numerical characteristic occupies six binary digits. The machine can operate
with numbers lying in between (approximately) from 10712 to 10!® (with respect
to the modulus).

There is a three-address system of commands; each address occupies 12 bi-
nary digits. Under the code of operation, 6 digits are removed. The remaining
digit which is not used plays an auxiliary role.

The input and output devices employ standard 80-column punched cards for
computers. The coding of the card punching for the input and output coincide,
so that the cards coming out of the machine may be again introduced - when
necessary - without interruption. The cards are printed on a separate device.

The sequence in which the problem is solved can be suitably analyzed by a
specific example. Let us assume that the problem consists of computing the
motion of two layers of substance separated by a contact discontinuity (Figure
54)., Let us assume that certain boundary conditions are given to the right and
to the left. The initial data are given at t = tg. Let us assume that at this
moment the left boundary (which was previously stationary), suddenly begins
to move at a certain velocity (which may change subsequently). A diverging
shock wave is produced at the moment ty at the left boundary. When it reaches
the contact discontinuity, discontinuity decay occurs. Then the wave passes
to the right boundary, from which it is reflected depending on the form of the
shock wave or on the form of the expansion wave, as a function of the right
boundary condition. Let us assume that from points A and B expansion /135
waves pass to the left. Let us assume that the purpose of the calculation is
to determine the motion at the moment t = tj.

Let us investigate the B-characteristic 1 - 1'. It begins on the line of
the initial data (t = tg), intersects the contact discontinuity and the shock
wave, and terminates on the left boundary (point 1')., Let us place the point 2
which is quite close to point 1 on the line for the initial data. Based on the
1 - 1' characteristic and point 2, we may compute the segment of the subsequent
B-characteristic (shown by the dashed line) up until it reaches the contact
discontinuity. As may be readily seen, we may also calculate the point of the
contact discontinuity line on the dashed characteristic, and may continue the
calculation up to the shock wave front. Calculating the shock wave point, we
extend a new characteristic up to the left boundary (point 2'). Returning to
the line t = ty, we may now take the subsequent point, and may compute the
following characteristic in the same order, etc.
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At the moment when the subsequent characteristic reaches the point A (i.e.,
when the shock wave reaches the contact discontinuity), the process must be
terminated in order to compute the discontinuity decay. It is then necessary to
calculate the region encompassed by the expansion wave, after which the compu~
tation may be continued in the same sequence. Beginning at a certain moment, the
B-characteristics will take their origin from the right boundary, whose next
point must be computed before the cycle is initiated. When the shock wave ap-
proaches the right boundary (point B), the discontinuity decay and the expansion
wave must be computed again. After this, the problem may be solved up to the
end, without any "interference."

If the problem contains converging shock waves, difficulties are then en-
countered due to the fact that such waves "truncate" the B-characteristic.
The computation must then be done for the o-characteristics. /136

This is the manner in which the described programs operate. The calcula-
tion is performed only along the a- or along the B-characterstic; the automatic
change from one regime to another is not specified. Therefore, the problem
under consideration may contain only converging, or only diverging shock waves.
This represents one of the very important conditions which limit the universal
application of our programs.

The second limitation consists of the fact that the computation of dis-
continuity decays is not specified by the programs; in every case that differ-~
ent discontinuities are "encountered,'" the computation must end. In essence,
the programs described are not designed for calculating the problem as a whole,
but only for calculating individual regions which satisfy the above-mentioned
conditions. The complex problem must be divided into sections which do not
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contain discontinuity decays or shock waves of different directions. The dis-
continuity decays are computed manually. In order to simplify the programs,
they do not include a change in the step during the computational process, so
that the grid of characteristics is fixed - it is determined by the initial
data, It is true that the programs control the recalculation quantities and the
difference in the magnitude of the Lagrangian coordinate R computed along dif-
ferent characteristics. If these quantities exceed the given constants, the
programs produce a stop with the corresponding signaling. In addition, the
special features of the computation are not taken into account in any way by
means of first-order discontinuities,

For purposes of determinancy, we shall only investigate a computation
along the B-characteristics. As was already pointed out, the primary working
cycle consist of computing the next B-characteristic. These characteristics
appear in the memory of the machine in the form of a sequence of points, each of
which consists of six quantities: t, r, R, u, z, v, and each of which occupies
six elements of the memory. The points are arranged in the order of decreasing
t and comprise the so-called main sequence. We shall call the address of the
memory element containing t of this point the point address. Thus, the address
of two adjoining points is distinguished by six units. The discontinuity points
occur in two elements corresponding to two sides of the discontinuity. It is
understood that t, r, R (and u for the contact discontinuity) coincide in both
elements. During the process by which the new B-characteristic is computed,
its points are recorded at the location of the points for the old characteris-
tic, so that while the main cycle is being performed the main sequence contains
the upper segment of the old characteristic (for the younger addresses) and the
lower segment of the new characteristic (for the older addresses).

In addition, the initial data (cross section t = tg in Figure 54) are
stored in the memory of the machine, also in the form of a sequence of points.
It is also necessary to stipulate the location for the programs, which are
subsequently read out from the magnet drum, with the next one taking the place
of the preceding one. /137

The logical information on the structure of the problem, also reflecting
the state of the computation at a given moment, is stored in the so-called con-
trolling elements; their contents will be discussed at a later point. The
different numerical constants of the problem (adiabatic indices for all sub-
stances, the quantities g, cp, etc.) are located here, Finally, there are
two groups (first and second) of standard elements, with six elements in each
group. They are designed for transmitting the numerical material from program

to program.

3. COMPUTATIONAL PROGRAMS

Let us now describe the operation of the computational programs. We
should first point out the following., As has already been indicated, the main
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working cycle consists of computing the successive B-characteristic. Tts points
are subsequently computed in the order of increasing t and occupy the location
of the points for the old B-characteristic in the main sequence. There are two
addresses in the information stored in the controlling elements - the selection
address and the recording address. The selection address coincides with the
address of the next point for the old B-characteristic ~ the point which must
be selected in order to compute the next point of the new characteristic. The
recording address indicates where the last calculated point must be delivered.
Naturally, both of these addresses change during the computational process (as

a rule, they decrease by six units after each point is computed). Their initial
state (before the next cycle) is established by logical programs. It is under-
stood that at each moment the readings of these addresses must be matched, so
that a new point which has just been computed does not occupy the position of
the requisite point for the old characteristic. As may be readily shown, in
order to do this it is necessary that the recording address be no less than the
selection address.

Let us now investigate separate computational programs.

Program for computing a segment of the characteristic (or, as we shall
designate it, the aB program). The operational cycle of this program includes
the computation of point 3 according to points 1 and 2 (Figure 55). Before the
program is called, point 2 must be recorded in the second group of standard
elements (this is performed by the preceding program). In addition, just as
always, the selection and recording addresses must be indicated.

The operational cycle of the program consists of the following operations.

1. The point of the main sequence, whose address coincides with the selec-
tion address, is transferred to the first group of the standard elements. The
selection address is decreased by six units.

2. A new point 3 is computed, according to the computational form— /138
ulas in Section 5, based on the points included in the first and second groups
of the standard elements. The results are stored in the working elements of
the program.

3. A point from the second group of standard elements is transferred to
the main sequence at the location indicated by the recording address. The re-
cording address is decreased by six units.

4. Point 3 which was just computed is transferred from the working ele-
ments to the second group of standard elements.

5. A test of the segment end of the characteristic is conducted (see be~
low). Depending on the results of this test, the program either repeats opera-
tion 1 - 5 or ends the operation and calls the subsequent program.

Thus, as may be readily seen, the segment of the new characteristic will
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be computed until the test of the end (point 5) causes the computation to ter-
minate.

The test of the segment end of the characteristic may be formulated in a
different way. The program must discontinue the operation after the discon-
tinuity point or the last point of the old characteristic is transferred to the
first group of standard elements. The simplest procedure is to supply such
points with a certain sign, on the basis of which the program can distinguish
them. TFor example, it is possible to proceed as follows. In the cylindrical
and spherical problems, r is always positive; in the plane problem, it is
always possible to select the origin so that r > 0 also holds. Let us assign
a minus sign to the "special" points (i.e., the discontinuity points and the
last point of the characteristic) for r, when these points are in sequence.
Immediately after the next point of the main sequence is transferred to the
first group of standard elements, the aB program tests the sign of r, which
will constitute a test of the segment end of the characteristic. Before the
computation of the next point of the new segment of the characteristic, the
minus sign for r in the first group of standard elements must be canceled. In
addition, it is necessary that each time, when any program stores a 'special”
point in the main sequence r of this point assumes a minus sign.

J

Figure 55

We should point out that when the operation of the aB program has termi-
nated, the last computed point remains in the second group of standard cells
and is not stored in sequence. The last point employed of the old /139
characteristic is included in the first group of standard elements.

Program for computing the contact discontinuity point (or, more precisely,
CD program). As a rule, this program operates after the program aB and also
calls the program oB after it is finished (generally speaking, another program -
i.e., pertaining to another region). Its operational sequence is as follows
(Figure 56). At the moment point 4 is called, which is the last calculated
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Figure 56

point of the new characteristic, point 2 in the first group is included in the
second group of standard elements. Point 1 is located in the main sequence;
its address is known -~ it coincides with the selection address, and therefore
it can be immediately transferred to the operational elements of the program.

The CD program must compute points 5 and 6 and perform the requisite prep-
aration for calling the subsequent program. The computations proceed according
to the first of the methods presented in Section 10 (see Figure 22). First of
all, the coordinates r, t of points 5 and 6 are found. In order to do this,
it is sufficient to know points 2 and 4. It is then necessary to determine point
3 at the old characteristic, whose a—characteristic falls at point 5. In the
first approximation, it may be assumed that a3 = o;. Thus, drawing the line
dr = o7 dt from point 5 (its coordinates are already known) and determining its
intersection with the line dr = g; dt, which approximately coincides with the
0ld characteristic, we obtain the coordinate t of point 3.

By "examining' the old characteristic, one can find three points on it
which are closest to point 3; the remaining quantities at point 3 will be in-
terpolated over them. These three points must be transferred to the special
working elements. The preparation for computing points 5 and 6 has now been
concluded, and they can be calculated completely according to the computational
formulas in Section 10,

After this, points 4 and 6 are stored in the main sequence (at point 6 the
sign of r changes); the recording address decreases by 12 units. Point /140
5 is transferred to the second group of standard elements. Point 3' which
directly follows behind point 3 is sought on the old characteristic; its ad-
dress is recorded at the location of the selection address. As may be readily
seen, it is now possible to call program af, which continues the calculation of
the following section of the characteristic in the customary manner.

Program for computing shock wave point (8W program). Similarly to the CD
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Figure 57

program, this program operates after the aB program, and calls program aBf after
it has finished (but, in contrast to CD, always the same one). When the opera-
tion is initiated, point 6 (Figure 57) is the next calculated point of the new
characteristic; this point will be "truncated" by the shock wave. As always,
it is located in the second group of standard elements. Point 1 is located in
the first group of standard elements; the address of point 2 coincides with the
address of the selection point.

Knowing points 1 and 2, we may compute the velocity of the shock wave
front; knowing point 6, we may compute the slope of this B-characteristic.
We may now readily find the coordinates of points 3 and 4, after which point 3
may be determined by interpolation over the section just computed of the new
characteyristic (which is completed by point 6). Point 5 may be found for the
0ld characteristic in exactly the same way as point 3 for the CD program (Fig-
ure 56). The computation of point 4 does not entail any fundamental diffi-
culties after this.

Point 3' which directly follows point 3 is sought on the new characteris-
tic. Point 3 is stored in the main sequence (with negative r) following 3';
the recording address is correspondingly established. Point 5' which /141
directly follows point 5 is found on the new characteristic; its address is
assumed to be the selection address. Point 4 is transferred to the second group
of standard elements, and the subsequent program is called.

We shall not discuss the operation of the other computational programs
(the most important of which are the programs for computing the points to the
left and to the right of the boundaries), since their logical structure may be
readily formulated by analogy with the programs discussed above. We would only
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like to point out certain special cases, which may arise during the operation
of the computational programs.

The CD program interpolates point 3 (Figure 56) along the segment of the
old B-characteristic., In order to do this, it finds three consecutive points
which are closest to point 3 on this segment. However, it is impossible to
find three such points. In the first place, three points may not exist on the
old characteristic in general - i.e., it may be too short. In addition, it is
possible that discontinuity points may be encountered among the points selected
for interpolation. This situation arises, for example, when a shock wave ap-
proaches a contact discontinuity. Similar situations may exist during the
operation of the SW program. The intersection of similar characteristics,
etc., may occur during the operation of the aB program.

All of these cases indicate that the computational program cannot compute
the subsequent point, and therefore the computation can be continued only if the
length of the B-characteristics is appropriately reduced, or the computation
must be stopped, in general. 1In all such cases, the computational programs
effectuate a stop with the appropriate signal. After the start, they call one
of the logical programs which determines the sequence of the subsequent calcu~-
lation. On the one hand, this conforms with the present situation and, on the
other hand, with the information introduced previously into the control ele-
ments and reflecting the computer requirements regarding the computational
sequence in a certain case. When programs are compiled, all of the possible
special cases, as well as all of the possible computational variations when
they are effectuated, must be stipulated very carefully.

4, CONTROLLING THE SEQUENCE IN WHICH PROGRAMS ARE CALLED

From this point on, we shall employ the term region to designate the por-
tion of the r, t-plane included between two contact discontinuities. The com-
putation is performed by the of - and SW programs within each region. The CD
programs operate on the boundaries of adjacent regions. The boundary conditions
may be defined on the right boundary of the right region and the left boundary
of the left region. These boundaries must be computed by special programs,
which we shall designate by RB (right boundary) and LB (left boundary).

Let us assume that we must compute a certain B-characteristic. /142
Generally speaking, it intersects several contact discontinuities and shock
waves, so that its structure may be expressed (approximately) as is shown in
Figure 58. This structure may be coded in the following way, for example. Let
us designate all the contact discontinuities by the index 1, and the shock
waves by the index 0. We shall use the index 1 for the last (upper) point of
the characteristic; we shall not use an index for the lower point. If we now
move along this characteristic from the bottom upward and if we record all of
the indices encountered in this procedure, we obtain a certain binary code.
This code will be as follows for the characteristic shown in Figure 58:
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From the number of control elements, let us select a certain element ¢
and let us write this code in it, beginning with the Oth digit. We obtain
the scale of discontinuities reflecting the over-all structure of the regular
B-characteristic.

Let us select one element, and let us write one in it in the Oth digit -
and zeros in all the remaining places - before the computation is initiated.
Let each of the SW and CD programs move this one one digit to the right after
they are called. As may be readily seen, when any segment of the characteris-
tic is computed this mobile ome will indicate the digit of the element ¢ which
designates the next closest discontinuity. Thus, the aB programs are able to
determine what program must be called - the SW or the CD program.

However, this information is insufficient for an accurate determina- /143
tion of the program to be called. The substances in different regions may
satisfy different equations of state, and therefore — for example - the SW
programs may differ considerably for different regions. The aB-programs,
which are called by the SW and CD programs, may also be different in different
regions. The necessity thus arises of knowing at each moment in which region
a given program operates at a given time.

The simplest procedure is to number all of the regions from right to left
with the numbers 0, 1, 2,..., and to place a counter in ome of the control
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elements; each CD program adds one to this counter. Then each computational
program may accurately determine which program belongs to it after it is
called.

Logical programs participate in the cycle, in addition to computational
programs. There are three such programs — Bl, B2 and BP, and their function is
as follows. They are called when the calculation of each characteristic is
terminated, before the beginning of the subsequent computation.

We may now provide a complete description of all the apparatus controlling
the sequence in which the programs are called. In order to formulate a com-
mand for reading a certain program from the magnetic drum, it is necessary
to know two numbers: for example, the number of the first drum element occu-
pied by the program, and the total number of codes for this program. Let us
call both of these two numbers the parameters of the given program. Two groups
of 12 binary digits are sufficient for recording them - two addresses (for ex-
ample, of the second and third) of the memory element.

Let us assume that all programs are being computed for problems consisting
of no more than three regions. It will be seen that this number may be com-
puted without any particular difficulty. Let us select 13 consecutive (control)
elements, and let us number them with =, » + 1,......, = + 12. Let us place
the parameters of all the participating programs in these elements in the fol-
lowing order:

P afl
%+ 1 SW }0 region
x4 2 CD
x+ 3 .
et 4 g% }1 region
x4+ 5 Ch
x4+ 6
X7 gg }2 region
x+ 8 RB
x -+ 9 LB
10 | Bl
x4+ 11 ) B2
x 412 BP

These parameters occupy only 24 digits of each element; the remaining /144

digits may be utilized for other information (the selection and recording ad-
dresses may be placed there, for example). In addition, three numbers are
stored in the control elements - the number of the first region (where the
lower point of the characteristic is located), the number of the last region
(where the upper point is located), and the current number of the region. The
current number of the region coincides with the number of the first region be-
fore the initial computation of the regular characteristic. After this, each
CD program adds one to it, so that at the end of the computation it must coin-
cide with the number of the last region (if a special case does not occur, due
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to which the given characteristic cannot be computed until the end).

The last (upper) point of the next B-characteristic can either belong
or not belong to the left boundary. Thus, in the problem shown in Figure 54,
the first case occurs at the beginning of the computation; the second case
occurs at the end of the computation., In the first case, at the end of the com-
putation the characteristics of the af-nrogram must call the LB program; in
the second case, the Bl program is called directly (the LB program always calls
Bl). Consequently, we must thus be able to distinguish between these two
cases. One digit in one of the control elements can beassigned, in order to do
this. The presence of one in this digit will signify the presence of the left
boundary; zero in this digit will indicate its absence.

Let us assume that the af-program is in operation at any moment. Let us
examine in detail the manner in which it produces the call of the subsequent

program.

First of all, the program compares the number of the last region with the
current number of the region. Two cases are thus possible:

1. Number does not coincide. The program determines the contents of the
element digit ¢ indicated by the mobile one (see above). Let these contents be
T (1t equals zero or one). Let n be the current number of the region. The
program selects the parameters from the element with the number

x4+ 3n+c4-1.

As may be readily seen, this will be the parameters of the SW or CD program
corresponding to the given region.

2. Numbers coincide. Just as previously, the program finds the quantity
7. If 1 = 0, then the parameters are selected from the element with the number
x + 3n + 1 (the SW program). If 1 = 1, the presence of the left boundary is
tested, and - depending on its condition -~ either the parameters LB or Bl are

selected.

The SW and RB programs select the parameters from the element with the
number x + 3n (the aB-program in the given region). The CD programs proceed in
the same manner, only it takes place after a change in the current number of
the region. The LB program always calls Bl, and the latter - B2. This sequence
of calls is disturbed in special cases (see above); then any computational
program calls the program Bl.

5. LOGICAL PROGRAMS /145

The left logical program Bl operates immediately after the regular char-
acteristic has been computed. The basic functions of this program consist of
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processing the upper end of the calculated characteristic, changing the compu-
tational regime in special cases (i.e., when this program is called "outside
of the sequence"), and producing so-called small outputs.

The region to be investigated may be limited above either by a certain

a-characteristic, or by certain cross section t = tg. The quantity tg must be
given, i.e., it is included among constants which determine the problem as a

whole. In the latter case, the upper ends of the B-characteristics must be
"truncated" from time to time, or - as may be readily seen - the upper point
of the new characteristic will always lie above the upper point of the old
one. "Truncation" of the characteristic may be reduced to the following
operations:

(a) determination of the last point remaining on the characteristic. In
the case under consideration, one-two points must remain above the cross sec~
tion t = tp in order that interpolation may be subsequently performed over
t = ty and the cross section point may be determined.

(b) the recording at this point of the end of the characteristic, i.e.,
the minus sign for r;

(¢) a change in the scale o, or discontinuity points may occur among the
points which are discarded;

(d) a change in the number of the last region, if there is a contact dis-—
continuity point among the points which are discarded.

A change in the computational regime in special cases naturally depends
on the nature of the case. As a rule, it may be primarily reduced to "trun-
cating" part of the B-characteristic. Thus, if the shock wave approaches the
contact discontinuity, so that one of the SW and CD programs discovers a short-
age of points for the interpolation (see above), it is then necessary to "trun-
cate" part of the B-characteristic line above this contact discontinuity.

The '"small outputs” produced also by the Bl program primarily include the
output of the upper and lower points of the computed characteristic, as well as
the points (binary) of all the discontinuities. All of these points may be de-
termined with no difficulty, since they have the appropriate designations. In
addition it is possible to determine the points of the given cross sections
(t = const) and the trajectory (R = const). Interpolation over the character-
istic is required here. The Bl program contains the corresponding block.

Let us describe the operation of the second logical program - B2. If the
basic problem of the Bl program is '"to process" the computed B-characteristic,
then the B2 program is concerned with the preparation for computing the new
characteristic. We must point out that, in essence, both of these programs
should be regarded as one "current" program. Their separation into two /146
programs is dictated by purely technical considerations (economy of the opera-
tive memory).
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The sequence of points comprising the line of initial data is stored in
the memory of the machine, along with the main sequence (the B-characteristic).
Generally speaking, this line consists of several fragments adjacent to each
other; each of these fragments is either a spacelike line (for example, the
t = const line) or a fragment of the o-characteristic. The transition points
from one segment to another (angular points) are in a certain sense special
points for the line of initial data. 1In addition, the line of initial data can
contain discontinuity points - contact discontinuities and shock waves.

All of these points must have the appropriate designations, in order that
the program may recognize them. In order to do this, it is possible to employ
(in a more comprehensive form) the same method used to record the discontinuity
points in the main sequence. The quantities r and R may always be assumed to
be positive. 1In addition, they are stored in the memory of the machine, as
always, in the form of normalized binary numbers, so that the first digit of
the mantissa must always be one for them. Thus, both for r and R the contents
of the two digits - the sign of the number and of the first digit of the man-
tissa - was known beforehand. Therefore, these digits may arbitrarily change
when they are stored in the sequence (after a point is transferred to the opera-
tional elements, in order to perform the computation it is necessary to restore
the normal form of these digits each time). This makes it possible to assign 16
different designations to the points.

The preparation for computing the regular characteristic encompasses the
following two steps at least:

(a) the transfer of the point of initial data to the second group
of standard elements;

(b) establishment of the initial state uvf the selection and recording
addresses.

We should point out that the initial state of the selection and recording
addresses depends on the nature of the initial data segment on which the next
point lies, If this segment is spacelike, then the selection and recording ad-
dresses must coincide. If the initial data segment is a segment of the a-
characteristic, the recording address must be six units greater than the selec-
tion address (the last point of the old characteristic does not participate in
the computation).

When the next point of initial data is a discontinuity point, additional
operations are generally required, the most important of which are:

(c) a change in the scale of the discontinuity o (in view of the formation
of a new discontinuity);

(d) a change in the number of the first region (when this new discontinu-
ity is a contact discontinuity).
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The last - the third - logical program (BP) produces the con- /147
trolled repetitions of the computation and produces the so-called large outputs.
As always, the operation of the machine must be controlled. For this purpose,
the computation is divided into fragments (let us say there are 10 character-
istics per fragment); the computation of each fragment is repeated. The results
are compared and, when they coincide, the state of the operative memory is
recorded on magnetic tape, and the computation is continued. Since this pro-
cedure is well known to every experienced programmer, we shall not describe it
in detail.

Immediately after the results of the next fragment are recorded on the
tape, the BP program produces the output of the main sequence on the punch
("large output').

In addition to the computational and logical programs enumerated above,
one “actuating" program participates in the operation. Its assignment is to
introduce the initial data, to convert them into a binary system, to arrange
them in the memory at the requisite places, to assign the appropriate designa-
tions to the special points, to formulate the control elements, etc. This
program operates once, before the initiation of the computation.

In very general outlines, these are the principles underlying the programs
for performing computations according to the characteristics method. We should
point out once more that the solution presented above for different computa-
tional and logical problems may in no way be regarded as the only possible solu-
tion.
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APPENDIX 2, EXAMPLE

In conclusion, we would like to present one specific example illustrating
the manner in which a gasodynamics problem is computed according to the method
presented above.

The structure of the problem is as follows., At the initial moment, there
is a spherical volume having the radius r = 1 filled with an ideal gas having
an adiabatic index = = % with the density pg = 1 and pressure py = 20. This
volume is enclosed by a layer of the same gas having the same density, but
with zero pressure (it may be assumed that these substances are initially di-
vided by a solid, infinitely thin, spherical wall). The outer radius of this
layer is 2. Finally, on the outside there is a spherical envelope made of a
substance having an equation of state such as (5.15) - (5.18) with an outer
radius of 2.5, which is characterized by the following parameters: * = 3,
pg = 5, ¢g = 3, pg = 0. This entire system is surrounded by a vacuum.

At the time t = 0, let us assume that the partition enclosing the inmer
spherical volume of the substance with the pressure p = 20 suddenly is removed.
As it expands, the substance sets in motion the layers surrounding it; the
motion will be spherically symmetrical.

Figure 59 presents the over-all picture of the motion on the r, t-plane,
obtained by employing the characteristics method for the computation. After the
decay of the initial discontinuity (point 1), the boundary of the inner sub-
stance begins to move to the right (line 1 - 2); a shock wave (line 1 -~ 3)
arises in the middle layer before it. An expansion wave defined by the char-
acteristics 1 - 4 and 1 - 5 appears in the inner volume. A new shock wave
5 - 6, which results from the intersection of the B-characteristics, arises at
point 5.

The shock wave 1 - 3, reaching the boundary with the outer layver, is re-
flected from it (line 3 - 2); a shock wave 3 - 7 passes into the outermost
layer. The reflected wave 3 - 2, reaching boundary 1 ~ 2, decays into a shock
wave 2 - 8 and an expansion wave which is defined by the characteristics 2 - 9
and 2 - 10. The boundary of the inner layer continues the motion along the
line 2 - 11.

The shock wave 3 - 7, reaching the free boundary (R = 2.5), is discharged
by the expansion wave included between the lines 7 - 12 and 7 - 13. The last
characteristic (shown in the figure by the dashed line) is that lying in the
region of negative pressure; in other words, a separation develops in /149
the outer envelope. The origin is taken on the line 7 - 14, where the pressure
p vanishes. This line becomes timelike for point 14, so that a wave encompas-
sing the separation (14 - 15) is initiated at point 14. The separation region
is crosshatched in the figure.

154



Figure 59

+ The problem was computed on an electronic '"Strela" computer according to
the program described in Appendix 1. The characteristic 1 - 4 served as the
initial data line; on this characteristic, u, p, p retain constant values

(u=0, p=1, p =20) as may be readily seen. The computation was divided
into several sections; the separation was computed by hand.

All of the computational elements were adequately discussed in the pre-
ceeding sections, and therefore we shall not present them.
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